CHAPTER 9

Information theory and source
coding

9.1 Introduction

There may be a number of reasons for wishing to change the form of a digital signal as
supplied by an information source prior to transmission. In the case of English language
text, for example, we start with a data source consisting of about 40 distinct symbols (the
letters of the alphabet, integers and punctuation). In principle we could transmit such text
using a signal alphabet consisting of 40 distinct voltage waveforms. This would
constitute an M-ary system where M = 40 unique signals. It may be, however, that for
one or more of the following reasons this approach is inconvenient, difficult or
impossible:

1. The transmission channel may be physically unsuited to carrying such a large number
of distinct signals.

2. The relative frequencies with which different source symbols occur will vary widely.
This will have the effect of making the transmission inefficient in terms of the time it
takes and/or bandwidth it requires.

3. The data may need to be stored and/or processed in some way before transmission.
This is most easily achieved using binary electronic devices as the storage and
processing elements.

For all these reasons (and perhaps others) sources of digital information are almost
always converted as soon as possible into binary form, i.e. each symbol is encoded as a
binary word. After appropriate processing the binary words may then be transmitted
directly, as either baseband or bandpass signals, or may be recoded into another multi-
symbol alphabet. (In the latter case it is unlikely that the transmitted symbols map
directly onto the original source symbols.) The body of knowledge, information theory,
concerned with the representation of information by symbols gives theoretical bounds on
the performance of communication systems and permits assessment of practical system
efficiency. The landmarks in information theory were developed by Hartley and Nyquist
in the 1920s and are summarised in [Shannon, 1948].
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Figure 9.1 The communications channel model.

The simplified communications system shown in Figure 9.1, may include several

encoders and decoders to implement one or more of the following processes:

Formatting (which transforms information from its original, or natural, form to a well
defined, and standard, digital form, e.g. PCM, see Chapter 6).

 Source coding (which reduces the average number of symbols required to transmit a
given message).

«  Encryption (which codes messages using a cipher to prevent unauthorised reception

or transmission).

e Error control coding (which allows a receiver to detect, and sometimes correct,
symbols which are received in error, see Chapter 10).

« Line coding/pulse shaping (which ensures the transmitted symbol waveforms are well
suited to the characteristics of the channel, see Chapters 6 and 8).

It is the second of these processes, source coding, which is the principal concern of
this chapter.

9.2 Information and entropy
9.2.1 The information measure

The concept of information content is related to predictability or scarcity value. That is,
the more predictable or probable a particular message, the less information is conveyed
by transmitting that message. For example, the football score Manchester United 7,
Bradford Academicals 0, contains little information. The information content of
Bradford Academicals 7, Manchester United 0, on the other hand is enormous!’

In essence highly probable messages contain little information and we can write:

P(message) = 1 carries zero information
P(message) = 0 carries infinite information

The definition of information content for a symbol m should be such that it
monotonically decreases with increasing message probability, P(m), and it goes to zero

'Readers must be aware that Manchester United is a premier division team while Bradford Academicals is a
non-league team and thus the chances are very remote for the second score to occur.
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for a probability of unity. Another desirable property is that of additivity. If one were to
communicate two (independent) messages in sequence, the total information content
should be equal to the sum of the individual information contents of the two messages.
We know that the total probability of the composite message is the product of the two
individual, independent, probabilities. Therefore, the definition of information must be
such that when probabilities are multiplied information is added.

The required properties of an information measure are summarised in Table 9.1.

Table 9.1 Information measures.

Message P (message) Information content
m P(m,) I
my P(m,) I,
(my+my) | P(m)P(my) L+

The logarithm operation clearly satisfies these requirements. We thus define (A ) the
information content, I, of a message, m, as:

1
1 = —log P
°2 B0m) g P(m)
This definition satisfies the additivity requirement, the monotonicity requirement, and for
P(m) =1, I,,=0. Note that this is true regardless of the base chosen for the logarithm.
Base 2 is usually chosen, however, the resulting quantity of information being measured

in bits:

I, 9.1)

>

I, + I, = —log, P(m) —log, P(my) = —log, [P(m) P(my)] (bits) (9.2)

Table 9.2 Word length and symbol probabilities.

Vocabulary size | No. binary digits | Symbol probability
2 1 172
4 2 1/4
8 3 1/8
128 7 1/128

9.2.2 Multisymbol alphabets

Consider, initially, vocabularies of equiprobable message symbols represented by fixed
length binary codewords. Thus a vocabulary size of four symbols is represented by the
binary digit pairs 00, 01, 10, 11. The binary word length and symbol probabilities for
other vocabulary sizes are shown in Table 9.2. The ASCII vocabulary used in teleprinters
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contains 128 symbols and therefore uses a log, 128 = 7 digit (fixed length) binary code
word to represent each symbol. ASCII symbols are not equiprobable, however, and for
this particular code each symbol does not, therefore, have a selection probability of

1/128.
9.2.3 Commonly confused entities

Several information-related quantities are sometimes confused. These are:

* Symbol A member of a source alphabet. May or may not be binary, e.g. 2 symbol
binary, 4 symbol PSK (see Chapter 11), 128 symbol ASCII.

* Baud Rate of symbol transmission, i.e. 100 baud = 100 symbol/s.

* Bit Quantity of information carried by a symbol with selection probability
P=0.5.

* Bitrate Rate of information transmission (bit/s). (In the special, but common, case
of signalling using independent, equiprobable, binary symbols, the bit rate
equals the baud rate.)

* Message A meaningful sequence of symbols. (Also often used to mean a source

symbol.)
9.2.4 Entropy of a binary source

Entropy (H) is defined as the average amount of information conveyed per symbol. For
an alphabet of size 2 and assuming that symbols are statistically independent:

2
H A ; P(m) log, F(lm*) (bit/symbol) 9.3)

For the two symbol alphabet (0, 1) if we let P(1) = p then P(0) = 1 — p and:

1
H = plog, —+ (1 -p) log, ] (bit/symbol) 9.4)
P 4
H A
1.0
0 1 p

1
2

Figure 9.2 Entropy for binary data transmission versus the selection probability, p, of a digital 1.
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The entropy is maximised when the symbols are equiprobable as shown in Figure 9.2.
The entropy definition of equation (9.3) holds for all alphabet sizes. Note that, in the
binary case, as either of the two messages becomes more likely, the entropy decreases.
When either message has probability 1, the entropy goes to zero. This is reasonable
since, at these points, the outcome of the transmission is certain. Thus, if P(0) =1, we
know the symbol 0 will be sent repeatedly. If P(0) =0, we know the symbol 1 will be
sent repeatedly. In these two cases, no information is conveyed by transmitting the
symbols.

For the ASCII alphabet, source entropy would be given by
H =—log, (1/128) =7 bit/symbol if all the symbols were both equiprobable and
statistically independent. In practice H is less than this, i.e.:

< 7 bit/symbol 9.5)

128 1
HA P(m)1

A 2, P logy ey
since the symbols are neither, making the code less than 100% efficient. Entropy thus
indicates the minimum number of binary digits required per symbol (averaged over a long
sequence of symbols).

9.3 Conditional entropy and redundancy

For sources in which each symbol selected is not statistically independent from all
previous symbols (i.e. sources with memory) equation (9.3) is insufficiently general to
give the entropy correctly. In this case the joint and conditional statistics (section 3.2.1)
of symbol sequences must be considered. A source with a memory of one symbol, for
example, has an entropy given by:

. 1 .
H = ZZI', P(j, i) log, PO (bit/symbol) 9.6)

where P(j, i) is the probability of the source selecting i and j and P(jli) is the probability
that the source will select j given that it has previously selected i. Bayes’s theorem,
equation (3.3), can be used to re-express equation (9.6) as:

1
P(jli)
(For independent symbols P(jli) = P(j) and equation (9.7) reduces to equation (9.3).)
The effect of having dependency between symbols is to increase the probability of
selecting some symbols at the expense of others given a particular symbol history. This
reduces the average information conveyed by the symbols, which is reflected in a reduced
entropy. The difference between the actual entropy of a source and the (maximum)
entropy, H ., the source could have if its symbols were independent and equiprobable is
called the redundancy of the source. For an M symbol alphabet redundancy, R, is
therefore given by:

H = Y, PGi) 3, P(jli)log, (bit/symbol) ©.7)
i J
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R = Hmax -H
log, (M) - H (bit/symbol) 9.8)

1

(It is easily shown that the quantity R/(H 2 + RH) relates to the number of symbols per bit
of information which are transmitted unnecessarily from an information theory point of
view. There may well be good reasons, however, to transmit such redundant symbols,
e.g. for error control purposes as discussed in Chapter 10.)

EXAMPLE 9.1
Find the entropy, redundancy and information rate of a four symbol source (A, B, C, D) with a baud

rate of 1024 symbol/s and symbol selection probabilities of 0.5, 0.2, 0.2 and 0.1 under the

following conditions:

(i) The source is memoryless (i.e. the symbols are statistically independent).

(ii) The source has a one symbol memory such that no two consecutively selected symbols can be
the same. (The long term relative frequencies of the symbols remain unchanged, however.)

#
& 1
H = m) log, ——
Z‘. pim) log; — s
0.51 ! +2x0.21 ! +0.11o !
= 0.5 lo, — .2 lo — . —
£2{ 05 82 0.2 8101
= 0.5 logy, 2 +0.4 logyy 5 ] log, 10
log), 2 logy, 2 logy, 2
= 1.761 bit/symbol
R = Hmax -H

logy M - H

log, 4—-1.761 = 2.0-1.761 = 0.239 bit/symbol
R, = R.H=1024x1.761=1.803x 10* bit/s
where R; is the information rate and R, is the symbol rate.
(i) The appropriate formula to apply to find the entropy of a source with one symbol memory is

equation (9.7). First, however, we must find the conditional probabilities which the formula
contains. If no two consecutive symbols can be the same then:

P(AlA) = P(BIB)= P(CIC)=P(DID)=0

Since the (unconditional) probability of A is unchanged, P(A) = 0.5, then every, and only
every, alternate symbol must be A, P(AIA) = P(AlA) = 1.0, where A represents not A.
Furthermore if every alternate symbol is A then no two non-A symbols can occur consecutively,
P(AIA) = 0. Writing the above three probabilities explicitly:
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P(BIA) + P(CIA) + P(DIA) =

P(AIB) = P(AIC)= P(AID)=1.0

P(BIC) = P(BID)= P(CIB)= P(CID)= P(DIB)= P(DIC) =0
Since the (unconditional) probabilities of B, C and D are to remain unchanged, i.e.:

P(B) = P(C)=0.2 and P(D) =

the conditional probability P(BIA) must satisfy:

P(B) = P(BIA)P(A) + P(BIB)P(B) + P(BIC)P(C) + P(BID)P(D)
= P(BIA)0.5+0+0+0
. _ 02
i.e. P(BIA) = 05 - 0.4
Similarly:
P(C) = P(CIA)P(A) + P(CIB)P(B) + P(CIC)P(C) + P(CID)P(D)
= P(CIA)0.5+0+0+0
0.2
i.e. P(CIA) = 03 =0.4
P(D) = P(DIA)P(A) + P(DIB)P(B) + P(DIC)P(C) + P(DID)P(D)
= P(DIA)0.5+0+0+0
i.e. P(DIA) = g—; =0.2

We now have numerical values for all the conditional probabilities which can be substituted into
equation (9.7):

i

. 1 .
H=Y PG ; P(jl) gy s (bisymbol)
= P(A)| P(AIA) log, —— + P(BIA) log, —— + P(CIA) log, ——— + P(DIA) log, —
= %2 p(AIA) 82 p(BIA) %82 p(CiA) 82 p(DIA)

I 1 1 1
+ P(B)| P(AIB) log, ——— B AI 5 * P(BIB) log, ——— N P(CIB) log, ——— ran P(DIB) log, ——— F OB

1 1 ! !
+ P(C) | P(AIC) log, s + P(BIC) 108y s + PICIC) logy s + PADIC) logy 5o ]

-

1 ! ! 1
+ P(D)| PAID) log; s + P(BID) log, s + P(CID) log, s + P(DID) log, s J

=O‘5[0.010g2 (1/0) + 0.4 log, 2.5 + 0.4 log, 2.5 + 0.2 log, 5.0:]

+ 0.2[1.010g2 1.0+0+0+0]+O.2[1.010g2 1.0+O+0+O]
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+ 0.1[1.010g2 1.0+o+o+o]

= 0.5 [ 0.4 log,, 2.5 + 0.4 log,, 2.5 + 0.2 logy, S.O]Ilogm 2 = 0.761 bit/symbol

R = Hmax -H
log, 4 —0.761 = 1.239 bit/symbol

(Notice that in this case the symbol A carries no information at all since its occurrences are entirely
predictable.)

R, = R,H =1024x0.761 =779 bit/s

9.4 Information loss due to noise

The information transmitted by a memoryless source (i.e. a source in which the symbols
selected are statistically independent) is related only to the source symbol probabilities by

equation (9.1), i.e.:

1 .

Irx(irx) = log, Plire) (bits) 9.9
where Irx(izx) is the information transmitted when the ith source symbol is selected for
transmission and P(iry) is the (a priori) probability that the ith symbol will be selected
(see section 7.2 for the definition of a priori probability). The use of a subscript 7X with
i, although not really necessary, will help with what can be a confusing notation later in
the chapter. For a noiseless channel there is no doubt on detecting a given received
voltage vgy corresponding to a given transmitted symbol, (vgx:irx), which source
symbol was selected for transmission. The quantity of information, in this case, gained
by receiving vy is therefore identical to that transmitted, i.e.:

Irx(Vextitx) = Irx(irx)

1

log, Plimg) (bits) (9.10)
For a noisy channel, however, there is some uncertainty given a detected voltage, vy,
about which symbol was actually selected at the source. This uncertainty is related to the
(a posteriori) probability, P(irx|vgy), that symbol i was transmitted given that voltage
vy was detected (see again section 7.2 for the definition of an a posteriori probability).
(For the noiseless channel P(irxlvgy) is unity for one particular source symbol and zero
for all others.) Intuition tells us that for a noisy channel the information received should
be less than that transmitted by an amount related to the uncertainty in the decision
process. In fact the received information is given by:

P(irxlvgy)

IRX(VRX:iTX) = 10g2 —1—)(17)— (bltS) (9]1)
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Using P(izxlvgy) in equation (9.11) corresponds to a soft decision process (see Figure
7.1). For hard decision processes the detected voltage vzy is converted immediately to a
received symbol jry. In this case equation (9.11) is rewritten as:

Plirx|jrx)
Piry)
where P(irxljgx) can be found from (but is not an element of) the end-to-end symbol
transition matrix, P(igxljry), described in section 7.3. (Note the interchanged position of
TX and RX quantities.) Care must be taken not to confuse the conditional probabilities
here (which relate to channel induced uncertainties, see section 7.2) with those in section

9.3 (which relate to source memory).

The reduction in information content of each symbol due to noise means that the
effective entropy, H,y, of the symbols on reception is less than their transmission
entropy, H. The effective (or reception) entropy of a symbol jzy is:

Hpy = Z P(jrx)Irx(jrx) (bit/symbol)
j

InxGiry) = log, (bits) 9.12)

where P(jgyx) is the (unconditional) symbol reception probability, and the bar denotes
averaging over all possible transmitted symbols:

Pliryljrx)
P(iry)
The difference between the transmission entropy and the effective entropy is called the

equivocation, E, i.e.:

H,s = H - E (bit/symbol) (9.14)

Trx(irx) = 25 PGiro) 25 Plirxljrx) log, 9.13)
j i

The equivocation essentially accounts for the uncertainty with which the transmitted
symbols can be assumed to be the same as the received symbols. The information
associated with this uncertainty and, therefore, the definition of equivocation is:

E = 2. Pliry, jrx) log, — L (bivsymbol) 9.15)
ij P(irx|jrx)

The similarity between equations (9.15) and (9.3) is notable, the essential difference

being that P(irx|jgx) relates to the probability of symbol error. Multiplying by the joint

probability P(iry, jrx) and summing over all i, j simply averages the resulting spurious

‘information’ over all types of error. Using P(iry, jrx) = P(jrx)P(itx!jrx) €quation

(9.15) can be rewritten as:

, .. 1
E = ; P(jrx) Z P(irx|jrx) log, Pl (9.16)

where P(jgrx) is an (unconditional) symbol reception probability. An alternative
interpretation of equivocation is as negative information added by noise.
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EXAMPLE 9.2
Consider a 3 symbol source A, B, C with the following transition matrix:

Ay B Cx
Agy 06 05 0
Bpy 02 05 0333
Cex 02 0O 0667

(Note that the elements of the transition matrix are the conditional probabilities P(igx!jrx) and that
columns and rows are labelled iy and igy only for extra clarity.) For the specific a priori (i.e.
transmission) probabilities: P(4) = 0.5; P(B) = 0.2; P(C) = 0.3, find: (i) the (unconditional)
symbol reception probabilities P(igy) from the conditional and a priori probabilities; (ii) the
equivocation; (iii) the source entropy; and (iv) the effective entropy.

(i) The symbol reception probabilities are found as follows:
P(Arx) P(Apx\Arx) + P(Bry) P(Agx|Brx) + P(Crx) P(AgxICrx)
0.5x0.6+0.2x0.5+0.3x0 = 0.4

P(Agx) =

P(Bry) = 0.5x0.2+0.2x0.5+0.3x0.333 = 0.3
P(Cry) = 0.5x0.2+0.2x0+0.3x0.667 = 0.3

(ii) To find the equivocation from equation (9.16) we require the probabilities P(izx|jzyx) Which can
be found in turn from P(igy!jry) and P(igy) using Bayes’s rule, equation (3.3):

P(Ap. Apy)  P(AgglAm) P(Ap) 0.6 x0.5
P(ArxlAgy) = = = = 0.75
R P(Arx) P(Agy) 0.4
P(BlAn) P(Bry, Ary) _ P(AmdBroP(Br) _ 0.5x0.2 _
P(Ary) P(Ary) 0.4
P(ApylCr)P(Cry)  0%0.3
P(CrxlAgy) = RXP(:&X) e Vil
P(B gyl Arx)P(A 0.2%0.5
P(A7x|Bry) = ( RXP(Zl)( ) _ o = 0333
P(B gy Byx)P(B 0.5%0.2
PBrylBry) = sl )( m) o 03X02 g5
RX .
P(Bpy!Cry) P(C 0.333x0.3
P(Crx|Bgy) = RXP(;X) )( ) _ 03 = 0.333
RX .
P(Cryl Arx) P(A 0.2%0.5
PAmgICry) = ’*"P(g‘))‘ m  02X03 g 53
RX .
P(Cry|Bx)P(Brx) 0x0.2
P(BylCry) = R"P(g‘ ) LS i 0
RX .
P(CrylCry) P(C 0.667 x 0.3
P(CrxlCry) = ( ’”‘P(g) )( ™) _ 03 = 0.667
RX .
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Equation (9.16) now gives the equivocation:

1 1
E = P(ARX)[ P(AT)(lARX)IOgZ m + P(BTX'ARX) 10g2 m :|
1 1
+ P(Agy) | P(CrxlAgy) log, PCalAmD) + P(Bgy)| P(Arx|Bgx) log, PABod)
X
1 1
+ P(Bgy)| P(Brx|Bgx)log, P—(E_IB—R) + P(Crx|Bgy) log, W
x!D px TX'B RY
1 1
+ P(Cgy) [ P(A7xICgyx) log, m + P(Brx!Cgy) log, m }
X

1
+ P(Cnx)[ P(CrxICry)log, PCoiCrd) :l

1 1
= 0.4| 0.751 0.251 e
[ 75 ng(o 75)+ 25 ogz(ms J“)}
1
+ 0.3[0.333 1og2( EEE )+0 333logz(0 333)+0 333 1og2(-0. 333 )}

1 1

0.4[0.311 +0.5]+0.3 [0.528 + 0. 528 + 0. 528] + 0.3 [0. 528 + 0.390]
1.08 bit/symbol

(iii) The source entropy H is:

1
H = 2, Pliro) log 55—

1 1 1
= 0.510g2(05 )+0 210g2(0—2-)+0 310g2(0—§)

= 1.48 bit/symbol

(iv) The effective entropy, equation (9.14), is therefore:
Hy = H-E
1.48 —1.08 = 0.4 bit/symbol
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9.5 Source coding

Source coding does not change or alter the source entropy, i.e. the average number of
information bits per source symbol. In this sense source entropy is a fundamental
property of the source. Source coding does, however, alter (usually increase) the entropy
of the source coded symbols. It may also reduce fluctuations in the information rate from
the source and avoid symbol ‘surges’ which could overload the channel when the
message sequence contains many high probability (i.e. frequently occurring, low entropy)

symbols.
9.5.1 Code efficiency

Recall the definition of entropy (equation (9.3)) for a source with statistically independent
symbols:

1
P(m)
The maximum possible entropy, H,.,, of this source would be realised if all symbols
were equiprobable, P(m) = 1/M, i.e..

Hpax = logy M (bit/symbol) (9.18)

(bit/symbol) 9.17)

M
H = Y, P(m)log,
m=1

A code efficiency can therefore be defined as:

Meode = X 100% (9.19)

max
If source symbols are coded into another symbol set, Figure 9.3, then the new code
efficiency is given by equation (9.19) where H and H,,,, are the entropy and maximum

possible entropy of this new symbol set.
If source symbols are coded into binary words then there is a useful alternative

interpretation of 7.,4. For a set of symbols represented by binary code words with
lengths [, (binary) digits, an overall code length, L, can be defined as the average
codeword length, i.e.:

M
L = Z P(m) l,, (binary digits/symbol) (9.20)
m=1
The code efficiency can then be found from:
H
Meode = (bit/binary digit) X 100% (9.21)
Message Transformation Message
(Symbol set 1) coder (Symbol set 2)

Figure 9.3 Translating a message berween different alphabets.
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Equations (9.21) and (9.19) are seen to be entirely consistent when it is remembered that
the maximum information conveyable per L digit binary code word is given by:

H,.« (bit/symbol) = L (bit/codeword) (9.22)

EXAMPLE 9.3

A scanner converts a black and white document, line-by-line into binary data for transmission. The
scanner produces source data comprising symbols representing runs of up to six similar image pixel
elements with the probabilities as shown below:

No. of consecutive pixels 1 2 3 4 5 6
Probability of occurrence | 0.2 | 0.4 | 0.15 | 0.1 | 0.06 | 0.09

Determine the average length of a run (in pixels) and the corresponding effective information rate
for this source when the scanner is traversing 1000 pixel/s.

6
1
H= Y, P(m)log, o

m=1

=0.2%x2.32+0.4%x1.324+0.15x2.74+0.1x3.32+0.06 x4.06+0.09x 3.47
=2.29 bit/symbol
Average length:

6
L=, Piml, =0.2+0.8+0.45+0.4+0.3+0.54 =2.69 pixels

m=1

At 1000 pixel/s scan rate we generate 1000/2.69 = 372 symbol/s. Thus the source information rate
is 2.29 x 372 = 852 bit/s.

We are generally interested in finding a more efficient code which represents the same
information using fewer digits on average. This results in different lengths of codeword
being used for different symbols. The problem with such variable length codes is in
recognising the start and end of the symbols.

9.5.2 Decoding variable length codewords

The following properties need to be considered when attempting to decode variable
length codewords:
(1) Unique decoding.

This is essential if the received message is to have only a single possible meaning.
Consider an M = 4 symbol alphabet with symbols represented by binary digits as
follows:
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A=0
B=01
C=11
D =00

If we receive the code word 0011 it is not known whether the transmission was
D, C or A, A, C. This example is not, therefore, uniquely decodable.

(2) Instantaneous decoding.
Consider now an M = 4 symbol alphabet, with the following binary representation:

A=0
B=10
C=110
D=111

This code can be instantaneously decoded using the decision tree shown in Figure 9.4
since no complete codeword is a prefix of a larger codeword. This is in contrast to the
previous example where A is a prefix of both B and D. The latter example is also a
‘comma code’ as the symbol zero indicates the end of a codeword except for the all ones
word whose length is known. Note that we are restricted in the number of available
codewords with small numbers of bits to ensure we achieve the desired decoding

properties.
Using the representation:
A=0
B=01
C =011
D=111

Initial state

Initial state

>

Emit
message

Recognised
symbol ?

Read next
digit

Figure 9.4 Algorithm for decision tree decoding and example of practical code tree.
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the code is identical to the example just given but the bits are time reversed. It is thus still
uniquely decodable but no longer instantaneous, since early codewords are now prefixes
of later ones.

9.6 Variable length coding

Assume an M = 8 symbol source A, - - -, H having probabilities of symbol occurrence:

m A B C D E F G H
P(m) |1 0.1 ) 018 [ 04 | 0.05 | 006 | 0.1 | 0.07 | 0.04

The source entropy is given by:

Pm) = 2.55 bit/symbol (9.23)
and, at a symbol rate of 1 symbol/s, the information rate is 2.55 bit/s. The maximum
entropy of an 8 symbol source is log, 8 = 3 bit/symbol and the source efficiency is
therefore given by:

H=Y, P(m)log,

2.55
= TSX 100% = 85% (9.24)

nx(rurce

If the symbols are each allocated 3 bits, comprising all the binary patterns between 000
and 111, the coding efficiency will remain unchanged at 85%.

Shannon-Fano coding [Blahut, 1987], in which we allocate the regularly used or
highly probable messages fewer bits, as these are transmitted more often, is more
efficient. The less probable messages can then be given the longer, less efficient bit
patterns. This yields an improvement in efficiency compared with that before source
coding was applied. The improvement is not as great, however, as that obtainable with
another variable length coding scheme, namely Huffman coding, which is now described.

9.6.1 Huffman coding

The Huffman coding algorithm comprises two steps — reduction and splitting. These
steps can be summarised by the following instructions:

(1) Reduction: List the symbols in descending order of probability. Reduce the two least
probable symbols to one symbol with probability equal to their combined
probability. Reorder in descending order of probability at each stage,
Figure 9.5. Repeat the reduction step until only two symbols remain.

(2) Splitting:  Assign 0 and 1 to the two final symbols and work backwards, Figure 9.6.
Expand or lengthen the code to cope with each successive split and, at
each stage, distinguish between the two split symbols by adding another 0
and 1 respectively to the codeword.



320 Information theory and source coding

The result of Huffman encoding the symbols A,---,H in the previous example

(Figures 9.5 and 9.6) is to allocate the symbols codewords as follows:

Symbol cC | B | 4 F G E D H
Probability | 040 | 0.18 | 0.10 | 0.10 | 007 | 006 | 005 | 004
Codeword 11 1 001 | OI1 | 0000 | 0100 | 0101 | 00010 | 00011
C 0.40 0.40 0.40 0.40 0.40 0.40 0.60 }l—> 1.00
B 0.18 0.18 0.18 — 0.19 0.23 0.37 0.40
\\

A 0.10 0.10 r—>0.13 0.18 0.19 023

N \\
F 0.10 0.10 0.10 0.13 0.18

N
G 0.07 0.09 0.10 }\0.10
E 0.06 0.07 :|J\O‘09
D 0.05 0.06
H 0.04

Figure 9.5 Huffman coding of an 8-symbol alphabet - reduction step.

D

H

Figure 9.6 Huffman coding — allocation of codewords to the 8 symbols.
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The code length is now given by equation (9.20) as:
L =1(0.4)+ 3(0. 18 + 0. 10) + 4(0. 10+ 0.07 + 0. 06) + 5(0. 05+ 0.04) = 2.61 (9.25)

and the code efficiency, given by equation (9.21), is:

= H x100% = 2.5 xX100% = 97.7% (9.26)
Ncode = L o = 2,61 0 = . 170 .

The 85% efficiency without coding would have been improved to 96.6% using Shannon-
Fano coding but Huffman coding at 97.7% is even better. (The maximum efficiency is
obtained when symbol probabilities are all negative, integer, powers of two, i.e. 1/2".)
Note that the Huffman codes are formulated to minimise the average code word length.
They do not necessarily possess error detection properties but are uniquely, and
instantaneously, decodable, as defined in section 9.5.2.

9.7 Source coding examples

An early example of source coding occurs in Morse where the most commonly occurring
letter ‘e’ (dot) is allocated the shortest code (one bit) and less used consonants, such as
‘y’ (dash dot dash dash), are allocated 4 bits. A more recent example is facsimile (fax)
transmission where an A4 page is scanned at 3.85 scan lines/mm in the vertical
dimension with 1728 pixels across each scan line. If each pixel is then binary quantised
into black or white this produces 2 Mbit of data per A4 page. If transmitted at 4.8 kbit/s
over a telephone modem (see Chapter 11), this takes approximately 7 min/page for
transmission.

In Group 3 fax runs of pixels of the same polarity are examined. (Certain run lengths
are more common than others, Figure 9.7.) The black letters, or drawn lines, are
generally not more than 10 pixels wide while large white areas are much more common.
Huffman coding is employed in the ITU-T standard for Group 3 fax transmission, Figure
9.8, to allocate the shortest codes to the most common run lengths. The basic scheme is
modified to include a unique end of line code for resynchronisation which determines

White runs

Black runs

Relative probability of occurrence

t : |
100 1000 10 000

—
—
f=]

Run length

Figure 9.7 Relative probability of occurrence of run lengths in scanned monochrome text.
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whether lines are received in error, as these should be always 1728 pixels apart.

In this application, Huffman coding improves the efficiency and reduces the time to
transmit the page to less than 1 minute. Facsimile is now very significant with 25% of
international telephone traffic representing fax transmissions between the 15 million
terminals in use worldwide. Continued improvements in the Group 3 fax have made the
transition to (the more advanced) Group 4 digital system unattractive. There is now an
ITU-T V.17 data modem standard (see Section 11.6) which transmits fax signals at 14.4
kbit/s and which is very similar to the V.32 9.6 kbit/s standard used to achieve the Figure
11.55(c) result.

There is current interest in run length codes aimed at altering their properties to
control the spectral shape of the coded signal. In particular it is desirable to introduce a
null at DC, as discussed in section 6.4, and/or place nulls or minima at those locations
where there is expected to be a null in the channel’s frequency response. Such techniques
are widely used to optimise the performance of optical and magnetic recording systems
[Schouhammer-Immink]. Run length codes can also be modified to achieve some error
control properties, as will be described in the next chapter.

9.7.1 Source coding for speech signals

Vocoders (voice coders) are simplified coding devices which extract, in an efficient way,
the significant components in a speech waveform, exploiting speech redundancy, to
achieve low bit rate (< 2.4 kbit/s) transmission. Speech basically comprises four
formants, (Figure 9.9), and the vocoder analyses the input signal to find how the position,
F,, F5, F5 and F4, and magnitudes, A;, A;, Ay and Ay, of these formants vary with
time. In this instance we fit a model to the input spectrum and transmit the model
parameters rather than, for example, the ADPCM quantised error samples, £,(kT), of

1]111100111]111]10011]1100000000]] bits
| 6W | 2B | oW |2B| SW | 8B | 2W  run lengths
1110 10100 1100 011 white
11 11 000101 black
11101110100111100000101011 Huffman coded output

Figure 9.8 Redundancy removal by source coding of printed character data (source: Pugh, 1991,
reproduced with the permission of the IEE).
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section 5.8.3.

Two major vocoder designs exist at present, the channel vocoder and the linear
predictive coder (LPC). The channel vocoder is basically a non-linearly spaced filterbank
spectrum analyser with 19 distinct filters. The LPC vocoder is usually implemented as a
cascade of linear prediction error filters which remove from the speech signal the
components that can be predicted [Jayant and Noll, Gray and Markel] from its previous
history by modelling the vocal tract as an all-pole filter. (See standard signals and
systems texts such as [Jackson, Mulgrew and Grant] for a discussion of the properties of
poles and zeros and their effect on system, and filter, frequency responses.) The LPC
vocoder extends the DPCM system described in Chapter 5 to perform a full modelling of
the speech production mechanism and removes the necessity for any quantised error
sample transmissions.

In the LPC vocoder, Figure 9.10, the analyser and encoder normally process the
signal in 20-ms frames and subsequently transmit the coarse spectral information via the
filter coefficients. The residual error output from the parameter estimation operation is
not transmitted. The error signal is used to provide an estimate of the input power level
which is sent, along with the pitch information and a binary decision as to whether the
input is voiced or unvoiced (Figure 9.10). The pitch information can be ascertained by
using autocorrelation (see sections 2.6 and 3.3.3) or zero crossing techniques on either the
input signal or the residual error signal, depending on the sophistication and cost of the
vocoder implementation. The decoder and synthesiser apply the received filter
coefficients to a synthesising filter which is excited with impulses at the pitch frequency if
voiced, or by white noise if unvoiced. The excitation amplitude is controlled by the input
power estimate information. This excitation with a synthetic signal reduces the
transmission bit rate requirement but also reduces the speech quality. (Speech quality is
assessed using the mean opinion score (MOS) scale (see section 5.7.3).)

Ay
Amplitude ‘ A Ay
Fl <-¢-> Fz 4.%-» F3 A4
4—¢->F4

Frequency (kHz)

Figure 9.9 Instantaneous spectral representation of speech as a set of four formant Sfrequencies.
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Figure 9.10 Block diagram of the linear predictive vocoder.
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Figure 9.11 Comparison of quality and transmission rate for various speech coding systems,
using the mean opinion score (MOS) rating.

With delays in the vocal tract of about 1 ms and typical speech sample rates of 8 to 10
kHz the number of predictor stages is normally in the range 8 to 12. 10 is the number
adopted in the integrated NATO LPC vocoder standard (LPC-10, also US Federal
Standard 1015) which transmits at a rate of 2.4 kbit/s and achieves a MOS of
approximately 2, Figure 9.11 and Table 9.3, for a complexity which is 40 times that of
PCM. The MOS score is low due to the synthesiser’s excitation with noise or regenerated
pitch information. This causes LPC to lose all background sounds and the speech to have
a characteristic metallic sound. The basic spoken words, however, are still quite
intelligible. These vocoders can be implemented as single chip DSP designs. In addition
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to vocoder applications, LPC synthesisers are used in several commercial speech systems,
including the Texas Instruments speak and spell children’s toy.

Much current research is in progress to improve the quality of vocoders. This
includes studies of hybrid coder systems such as LPC excited from a codebook of
possible signal vectors (CELP) or excited with multiple pulses (MPE) rather than simple
pitch information as in Figure 9.10. US Federal Standard 1016 defines a 4.8 kbit/s CELP
implementation for secure systems. In developing these systems low coder delay (not
greater than 2 ms) is an important design goal.

CELP systems achieve a MOS of 3.2 at 4 kbit/s but they are 50 to 100 times as
complex as the basic PCM coder. For higher quality transmission ITU-T G.728 defines a
16 kbit/s low delay CELP implementation. These two approaches, which also involve
feedback to compare the synthesised speech with the original speech and minimise the
difference, are being developed for mobile systems such as GSM (see section 15.4).

Table 9.3 Rate, performance and complexity comparison for various speech coder designs.

Class Technique Bit rate MOS Relative
(kbit/s) | quality | complexity
Waveform PCM G.711 64 4.3 1
coders ADPCM G.721 32 4.1 10
DM 16 3 0.3
Intermediate SBC (2) G.722 64 - 48 4.3 30
coder (7 kHz)
Enhanced CELP/MPE for 4.8 3.2 50 - 100
source coder 4 rate GSM
Source coder | LPC-10 vocoder 2.4 2 40

9.7.2 High quality audio coders

Other audio coding techniques are based on frequency domain approaches where the 0.2
to 3.2 kHz speech bandwidth is split into 2 to 16 individual sub-bands by a filterbank or a
discrete Fourier transform (DFT) (see section 13.5), Figure 9.12, to form a sub-band
coder (SBC). Band splitting is used to exploit the fact that the individual bands do not all
contain signals with the same energy. This permits the accuracy of the quantiser in the
encoder to be reduced, in bands with low energy signals, saving on the coder transmission
rate. While this was initially applied to achieve low bit rate intermediate quality speech
at 16 kbit/s, the same technique is now used in the ITU-T G.722 0 to 7 kHz high quality
audio coder which employs only two subbands to code this wideband signal at 64/56/48
kbit/s with a MOS between 3.7 and 4.3. This is a low complexity coder, implemented in
one DSP microprocessor, which can operate at a P, of 107 for ISDN teleconferencing
and telephone loudspeaker applications. The MOS drops to 3.0 at a P, of 10~*. Compact
disc player manufacturers are also investigating an extension of this technique with 32
channels within the 20 kHz hi-fi bandwidth. Simple 16-bit PCM at 44.1 ksample/s
requires 700 kbit/s but the DFT based coder offers indistinguishable music quality at 88
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kbit/s or only 2 bit/sample. This development of the ISO/MPEG standard is very
important for the digital storage of broadcast quality signals, for example HDTV and
digital audio (see Chapter 16).

Finally it has been shown that variants of these techniques can achieve high quality
transmission at 64 kbit/s, which is also very significant for reducing the storage
requirements of digital memory systems.

Similar coding techniques are applied to encode video signals but due to the large
information content the bit rates are much higher. Video is usually encoded at 140 or 34
Mbit/s with the lower rate involving some of the prediction techniques discussed here. In
video there is also redundancy in the vertical and horizontal dimensions, and hence
spatial Fourier, and other, transformation techniques [Mulgrew and Grant] are attractive
for reducing the bit rate requirements in, for example, video telephony applications (see
Chapter 16).

9.7.3 String coding

Lempel-Ziv, or its common implementation, the LZW algorithm [Welch, 1984], trains on
data to identify commonly occurring strings of input characters and builds up a table of
these strings. Each string in the table is then allocated a unique 12 bit code. Commonly
encountered word strings, e.g. 000, 0000, or ‘High Street’ experience compression when
they are allocated their 12-bit codes, especially for long (> 10 character) strings. Thus
the scheme relies on redundancy in the character occurrence, i.e. individual character
string repetitions, but it does not exploit, in any way, positional redundancy.

LZW compression operates typically on blocks of 10,000 to 30,000 symbols and
achieves little compression during the adaptive phase when the table is being constructed.
It uses simplified logic, which operates at three clock cycles per symbol. After 2,000 to
5,000 words have been processed typical compression is 1.8:1 on text, 1.5:1 on object
files and > 2:1 on data or program source code. There is no compression however on

Upper sub-band
2:1 ] 1:2
|” Decimator Interpolator [~ ]
P~ S~
3 Coder + o
channel +
decoder
= =
L 2:1 . 12
Decimator Interpolator

Lower sub-band

Figure 9.12 Sub-band (speech) coder with two, equal width, sub-bands and separate encoding of
sub-band signals after sample rate reduction.
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floating point arrays which present noise-like inputs.

9.8 Summary

The information content of a symbol is defined as the negative logarithm of the symbol’s
selection probability. If 2 is chosen as the base of the logarithm then the unit of
information is the bit. The entropy of an information source is the average information
per selected, or transmitted, symbol. The entropy of a binary source with statistically
independent, equiprobable, symbols is 1 bit/binary digit. Statistical dependence of
symbols, and unequal selection probabilities, both reduce the entropy of a source below
its maximum value. Redundancy is the difference between a source’s maximum possible
entropy and its actual entropy. Noise at the receiver makes the decision process uncertain
and thus reduces the information content of the received symbol stream. The information
content of the symbols after detection is called the effective entropy and is equal to the
entropy on transmission minus the equivocation introduced by the noise. In this sense
noise may be interpreted as negative information added to the transmitted symbol stream.

Source coding removes redundancy, making transmission and/or storage of
information more efficient. Source codes must, in general, be uniquely decodable.
Source coding of discrete information sources is, normally, also loss-less, i.e. the coding
algorithm, in the absence of symbol errors, is precisely reversible. Codes may, in
addition, be instantaneously decodable, i.e. contain no code words which form a prefix of
any other code words. The Huffman code, used for Group 3 fax transmission, is an
example of a unique, loss-less, instantaneous code.

Vocoders use models of the physical mechanism of speech production to transmit
intelligible, but low bit rate, speech signals. In essence it is the model parameters, in the
form of adaptive filter coefficients, which are transmitted instead of the voice signals
themselves. The adaptive filters are excited at the receiver by a pulse generator, of the
correct frequency (pitch), for voiced sounds or white noise for unvoiced sounds.

Sub-band coding splits the transmitted signal into two or more frequency sub-bands
using hardware or (DFT) software. This allows the quantisation accuracy for each sub-
band to reflect the importance of that band as measured by the signal power it contains.
Other transform coding techniques can be used to encode speech and images. Transform
coding is particularly significant in two-dimensional image transmission as it minimises
redundancy which takes the form of correlation in intensity or luminance values between
closely spaced pixels. Vocoder and transform coding techniques are lossy in that there is
an inevitable (but often small) loss in the information content of the encoded data.

String coding algorithms are particularly efficient at compressing character-based data
but coding times are long since commonly occurring strings must be initially searched for
in the data. String coding is used for compression of computer files in order to speed up
transport between machines and save disc space.

The next chapter shows how the opposite technique to source coding, i.e. increasing
redundancy, can be employed to detect, and sometimes correct, errors in data which may
occur during its transmission or storage.
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9.9 Problems

9.1. (a) Consider a source having an M = 3 symbol alphabet where P(x,) = Y4; P(x;) = P(x3) =Y
and symbols are statistically independent. Calculate the information conveyed by the receipt of the
symbol x,. Repeat for x, and x;. [/,, =1 bit, I,, = 1,, =2 bits]

(b) Consider a source whose, statistically independent, symbols consist of all possible binary
sequences of length k. Assume all symbols are equiprobable. How much information is conveyed
on receipt of any symbol. [k bits]

(c) Determine the information conveyed by the specific message x,x3x,x; when it emanates from
each of the following, statistically independent, symbol sources: (i) M =4; P(x|) =Y, P(x;) =Y,
P(x3) = P(x4) = 1/8, [7 bits] (ii) M = 4; P(x|) =P(x,) =P(x3) =P(x,) = Y4. [8 bits]

9.2. (a) Calculate the entropy of the source in Problem 9.1(a). [1%2 bit/symbol]

(b) Calculate the entropy of the sources in Problem 9.1(c). [1% bit/symbol, 2 bit/symbol)]

(c) What is the maximum entropy of an 8 symbol source and under what conditions is this situation
achieved? What are the entropy and redundancy if P(x;) ="', P(x;) = 1/8 for i =2,3,4 and
P(x;)=1/32fori=15,6,7,8? [3 bit/symbol, 2.25 bit/symbol]

9.3. Find the entropy, redundancy and code efficiency of a three symbol source A, B, C, if the
following statistical dependence exists between symbols. There is a 20% chance of each symbol
being succeeded by the next symbol in the cyclical sequence A B C and a 30% chance of each
symbol being succeeded by the previous symbol in this sequence? [1.485 bit/symbol; 0.1
bit/symbol; 93.7%]

9.4. Show that the number of redundant symbols per bit of information transmitted by an M-
symbol source with code efficiency 7.4, i given by (1 = 7704 )/ (coge 108, M) symbol/bit.

9.5. Estimate the maximum information content of a black and white television picture with 625
lines and an aspect ratio of 4/3. Assume that 10 brightness values can be distinguished and that the
picture resolution is the same along a horizontal line as along a vertical line. What maximum data
rate does a picture rate of 25 picture/s correspond to and what, approximately, must be the
bandwidth of the (uncoded and unmodulated) video signal if it is transmitted using binary symbols?
(If necessary you should consult Chapter 16 to obtain TV scanning format information.) [3.322
bit/symbol and 1.73 Mbit/picture; 43.25 Mbit/s; 21.62 MHZz]

9.6. Calculate the loss in information due to noise, per transmitted digit, if a random binary signal
is transmitted through a channel, which adds zero mean Gaussian noise, with an average signal-to-
noise ratio of: (a) 0 dB; (b) 5 dB; (c) 10 dB. [0.6311; 0.2307; 0.0094 bit/binit]

9.7. An information source contains 100 different, statistically independent, equiprobable symbols.
Find the maximum code efficiency, if, for transmission, all the symbols are represented by binary
code words of equal length. [7 bit words and 94.9%]

9.8. (a) Apply Huffman’s algorithm to deduce an optimal code for transmitting the source defined
in Problem 9.1(c)(i) over a binary channel. Is your code unique?

(b) Define the efficiency of a code and determine the efficiency of the code devised in part(a).

(c) Construct another code for the source of part (a) and assign equal length binary words
irrespective of the occurrence probability of the symbols. Calculate the efficiency of this source.
[(a) 0, 10, 110, 111, Yes; (b) 100%; (c) 87.5%]




