CHAPTER 4

Linear systems

4.1 Introduction

The word system is defined [Hanks] as ‘a group or combination of inter-related, inter-
dependent, or interacting elements forming a collective entity; ... In the context of a
digital communications system the interacting elements, for example electronic
amplifiers, mixers, detectors etc., are themselves subsystems made up of components
such as resistors, capacitors and transistors. An understanding of how systems behave,
and are described, is therefore important to the analysis of electronic communications
equipment.

This chapter reviews the properties of the most analytically tractable, but also most
important, class of system (i.e. lincar systems) and applies concepts developed in
Chapters 2 and 3 to them. In particular convolution is used to provide a time domain
description of the effect of a system on a signal and the convolution theorem is used to
link this to the equivalent description in the frequency domain. Towards the end of the
chapter the effect of memoryless non-linear systems on the pdf of signals and noise is

briefly discussed.

4.2 Linear systems

Linear systems constitute one, restricted, class of system. Electronic communications
equipment is predominantly composed of interconnected linear subsystems.

4.2.1 Properties of linear systems

Before becoming involved in the mathematical description of linear systems there are two
important questions which should be answered:

1. What is a linear system?
2. Why are linear systems so important?
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In answering the first question it is almost as important to say what a linear system is
not, as to say what it is. Figure 4.1 shows the input/output characteristic of a system
which is specified mathematically by the straight line equation:

(1) = mx(t)+C 4.1)
This system, perhaps surprisingly, is non-linear (providing C #0). A definition of a
linear system can be given as follows:

A system is linear if its response to the sum of any two inputs is the sum of its

responses to each of the inputs alone.

This property is usually called the principle of superposition since responses to
component inputs are superposed at the output. In this context linearity and superposition
are synonymous. If x;(z) are inputs to a system and y;(¢) are the corresponding outputs
then superposition can be expressed mathematically as:

) = 2 yild) (4.2()

when:

il

x(t) Z 170 (4.2(b))

Proportionality (also called homogeneity) is a property which follows directly from
linearity. It is defined by:

y(t) = my (1) (4.3(a))
when:
x(t) = mx(t) (4.3(b)

The system described by Figure 4.1 and equation (4.1) would have this property ifC=0
and in this special case is, therefore, linear. For C # 0, however, the system does not obey
proportionality and therefore cannot be linear. (Equations (4.3) represent a necessary and
sufficient condition for linearity providing the system is memoryless i.e. its instantaneous
output depends only on its instantaneous input.) A further property which systems often

0 x

Figure 4.1 Input/output characteristic of a non-linear system.
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have is time invariance. This means that the output of a system does not depend on when
the input is applied (except in so far as its location in time). More precisely time
invariance can be defined by:

Y0 = y@-T) (4.4(2))

when:
x(t) = xi¢-T) (4.4(b))

The majority of communications subsystems obey both equations (4.2) and (4.4) and are
therefore called time invariant linear systems (TILS).
Time invariant linear systems can be defined using a single formula which also

explicitly recognises proportionality, i.e.:
If yi() = S{xi(1)} and y,(t) = S{x(1)} (4.5(a))
then S{ax (¢t = T)+bxy(t —=T)} = ay(t —T)+ by,(t =T) (4.5(b))

where S{ } represents the functional operation of the system.

4.2.2 Importance of linear systems

The importance of linear systems in engineering cannot be overstated. It is interesting to
note, however, that (like periodic signals) linear systems constitute a conceptual ideal that
cannot be strictly realised in practice. This is because any device behaves non-linearly if
excited by signals of large enough amplitude. An obvious example of this in electronics
is the transistor amplifier which saturates when the amplitude of the output approaches
the power supply rail voltages (Figure 4.2). Such an amplifier is at least approximately
linear, however, over its normal operating range. It is ironic, therefore, that whilst no
systems are linear if driven by large enough signals many non-linear systems are at least
approximately linear when driven by small enough signals. This is because the transfer
characteristic of a non-linear (memoryless) system can normally be represented by a
polynomial of the form:
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Figure 4.2 Non-linear behaviour of a simple transistor amplifier.
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y(t) = ax(t) + bx’(t) + cx’ () + - - (4.5(c))

For small enough input signals (and providing a # 0) only the first term in equation
(4.5(c)) is significant and the system therefore behaves linearly.

An important property of linear systems is that they respond to sinusoidal inputs with
sinusoidal outputs of the same frequency (i.e. they conserve the shape of sinusoidal

signals).
Other compelling reasons for studying and using linear systems are that:

1. The electric and magnetic properties of free space are linear, i.e.:
D=¢E (Cm? (4.6(2))
B = p,H (Wom™) (4.6()

(Since free space is memoryless, proportionality is sufficient to imply linearity.)
2. The electric and magnetic properties of many materials are linear over a large range

of field strengths, i.e.:

D = g¢,E (Cm™) 4.7(a))
B = upH (Wom™) (4.7(b))
J = ¢E (A/m™) 4.7(c))

where ¢,, 4, and o are constants. (There are notable exceptions to this, of course,

e.g. ferromagnetic materials.)
3. Many general mathematical techniques are available for describing, analysing and

synthesising linear systems. This is in contrast to non-linear systems for which few, if
any, general techniques exist.

EXAMPLE 4.1
Demonstrate the linearity or otherwise of the systems represented by the diagrams in Figure 4.3.

(a) For input x,(¢) output is y,(t) = x,(t) + f()
For input x,(¢) output is y,(£) = x(t) + f(1)
For input x, () + x,(¢) output is x;(t) + x,(t) + f(t) # yi(8) + y,()
i.e. superposition does not hold and system (a) is, therefore, not linear.
(b) For input x(t) = x,() + x,(¢) the output y(¢) is:

y(©) = fOLx, (1) + x2(D]
= f()x, () + f(O)x(1) = y1(8) + y2(0)

which is the superposition of the outputs due to x,(¢) and x,(¢) alone. System (b} is, therefore,

linear.
(c) For input x(#) = x,(t) + x,(¢) output y(t) is:

_d
Y0 = 2[5+ 00
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x ° x(f) }X‘ y ()
(a) Addition of a function (b) Multiplication by a function

® ® x( y(@®

xo— dﬁr() ——zo o] J_t()dt———-o
(c) Differentiation (d) Integration
x(f) y(
o— T —o

(e) Time delay (T seconds)
Figure 4.3 Systems referred to in Example 4.1.

]

2w+ 2 o0
a T

y1(8) + y,(8)

i.e. system (c) is linear.
(d) Forinput x(¢) = x;() + x,(t) output y(r) is:

o) j [x () + x,(0)] dt’

t t

[u@yar+ [ x@yar = y@+y0

—~oca 00

i.e. system (d) is linear.
(e) For input x(¢) = x,(¢) + x,(¢) output is:

y) = x; (¢ =T)+x,(t = T)
= y1(t) + y,(8)

i.e. system (e) is linear.

There is an apparent paradox involved in the consideration of the linearity of additive and
multiplicative systems. This is that the operation of addition is, by definition, linear, i.e. if two
inputs are added the output is the sum of each input by itself. The reason system (a) is not linear is
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that f(¢) is considered to be part of the system, not an input. Conversely multiplication is a non-
linear operation in the sense that if two inputs are multiplied then the output is not the sum of the
outputs due to each input alone (which would both be zero since each input alone would be
multiplied by zero). When f(¢) in Figure 4.3(b) is considered to be part of the system, however,
superposition holds and the system is therefore linear.

Another point to note is that systems must be either non-linear or time varying (or both) in
order to generate frequency components at the output which do not appear at the input.
Multiplying by f(t) in Figure 4.3(b) will result in new frequencies at the output providing f(¢) is
not a constant. This is because in this case we have a time varying linear system. If f(¢) = constant
then system (b) is a time invariant linear system (in fact a linear amplifier) and no new frequencies

are generated.

4.3 Time domain description of linear systems
Just as signals can be described in either the time or frequency domain, so too can

systems. In this section time domain descriptions are addressed and the close relationship
between linear systems and linear equations is demonstrated.

4.3.1 Linear differential equations

Any system which can be described by a linear differential equation, of the form:

dy de dN—ly
apgy + a dt+a2 i +"'+aN_1W
dx d’x dMx
=box +b +b + by = 4.8
ox +by o+ by M-l T (4.8)

always obeys the principle of superposition and is therefore linear. If the coefficients a;
and b, are constants then the system is also time invariant. The response of such a system
to an input can be defined in terms of two components. One component, the free
response, is the output, y 4., (¢), when the input (or forcing function) x(¢) = 0. (Since x(r)
is zero for all ¢ then all the derivatives d" x(¢)/dt" are also zero.) The free response is
therefore the solution of the homogeneous equation:

dy dZy dN—] y
aoy + ay — d + ay —— dtz + .- aN_1 W'—l = O (49)
subject to the value of the output, and its derivatives, at t = 0, i.e.:
dy d’y a’ly
(O) |t—0’ d[2 ‘1—0! B dN] |

These values are called the initial conditions. The second component, the forced
response, is the output, ¥ 4,,..4(t), when the input, x(¢), is applied but the initial conditions
are set to zero, i.e. it is the solution of equation (4.8) when:
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dy d*y dly
)’(0)=Z|;=o=ﬁ|,=o="'=—m|,=0=0 4.10)

The total response of the system (unsurprisingly, since superposition holds) is the sum of
the free and forced responses, i.e.:

)’(I) = yfree(t)+yf0rced(t) (411)

An alternative decomposition of the response of a linear system is in terms of its steady
state and transient responses. The steady state response is that component of y(¢) which
does not decay (i.e. tend to zero) as r — o=, The transient response is that component of
y(t) which does decay as t — o, i.e.:

y(t) = ysteady(t) + Ytransient ® 4. 12)

4.3.2 Discrete signals and matrix algebra

Consider a linear system with discrete (or sampled) input xy, X3, X3, =", Xy and discrete
output yy, ¥z, ¥3. -+, ¥y as shown in Figure 4.4. Each output is then given by a
weighted sum of all the inputs [Spiegel]:
Y1 G Gip.-.. Gy | |1
Y2 Gy Gy ... Goy || X2
el .. (4.13)
M GMI .. GMN XN
ie.:
N
vi = 2,G;x; (4.14)
j=1

(If the system is a physical system operating in real time then G;; = 0 for all values of x;
occurring after y;.)

x(1) ‘*‘ At [4' y(0 j At r
X2 M| ' ya
wip il gy e R E L L S

3 Eat
[ 3 . system o 0 | t

Figure 4.4 Linear systems with discrete input and output.
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4.3.3 Continuous signals, convolution and impulse response

If the discrete input and output of equation (4.14) are replaced with continuous
equivalents, 1.e.:

yi = y(®)

xX; o x(1)
(the reason for keeping the input and output variables,  and ¢, separate will become clear
later) then the discrete summation becomes continuous integration giving;

NAr

y) = f G(t, r)x(r) dr (4.15)
0

The limits of integration in equation (4.15) assume that x; occurs at 7= 0, and the N
input samples are spaced by Arseconds. Once again, for physical systems operating in
real time, it is obvious that future values of input do not contribute to current, or past,
values of output. The upper limit in the integral of equation (4.15) can therefore be
replaced by ¢ without altering its value, i.e.:

!
0 = [ 6t0xw) de “.16)
0

Furthermore, if input signals are allowed which start at a time arbitrarily distant in the
past then:

y0) = [ G nx(e) dr @.17)

Systems described by equations (4.16) and (4.17) are called causal since only past
and current input values affect (or cause) outputs. Equations (4.15) to (4.17) are all
examples of integral transforms (of x(z)) in which G(¢,7) is the transform kernel.
Replacing the input to the system described by equation (4.17) with a (unit strength)
impulse, 8(7), results in:

t
h(t) = IG(t,r)&(z‘) dr (4.18)

(The symbol A(?) is traditionally used to represent a system’s impulse response.) If the
impulse is applied at time 7 =T then, assuming the system is time invariant, the output
will be:

t
h(t—T) = J Gt,7)8(r — T) dr (4.19)

—00

The sampling property of 6(r —T) under integration means that G(¢,7) can be
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interpreted as the response to an impulse applied at time 7 =7, ie.
h@-T) = G(,T) (4.20)

the surface G(t, 7) therefore represents the responses for impulses applied at all possible
times (Figure 4.5). Replacing T with 7in equation (4.20) (which is a change of notation
only), and substituting into equation (4.17) gives:

t
) = J h(t — D)x(z) dt @.21)
If non-causal systems are allowed then equation (4.21) is rewritten as:
@) = J h(t — 7)x(z) dr (4.22)

Equations (4.21) and (4.22) can be recognised as convolution, or superposition, integrals.
The output of a time invariant linear system is therefore given by the convolution of the

system’s input with its impulse response, i.e.:
y(t) = h@) * x(2) (4.23)

Note that the commutative property of convolution means that equations (4.22) and (4.23)
can also be written as:

y(t) = x(t) * h(t)

j h(o)x(t — 7) dt (4.24)

Note also that equations (4.21) to (4.24) are consistent with the definition of an impulse
response since in this case:

G(t1)

Figure 4.5 G(t,7) for a hypothetical system. Response for an impulse applied at time t =T is the
curve formed by the intersection of G(1, t) with the plane containing & (r-T).
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(&) = h() * 6(t) = h(1) (4.25)

4.3.4 Physical interpretation of y(z) = i(z) * x(t)

The input signal x(¢) can be considered to consist of many closely spaced impulses, each
impulse having a strength, or weight, equal to the value of x() at the time the impulse
occurs times the impulse spacing. The output is then simply the sum (i.e. superposition)
of the responses to all the weighted impulses. This idea is illustrated schematically in
Figure 4.6. It essentially represents a decomposition of x(¢) into a set of (orthogonal)
impulse functions. Each impulse function is operated on by the system to give a
(weighted, time shifted) impulse response and the entire set of impulse responses is then
summed to give the (reconstituted) response of the system to the entire input signal. In
this context equation (4.22) can be reinterpreted as:

y0) = [ b= 0)ix(e) de) (4.26)

where [x(z)dr] is the weight of the impulse occurring at the input at time 7 and A(t — 1)
is the ‘fractional’ value to which [x(r)dr] has decayed at the system output by time ¢ (i.e.
t — r seconds after the impulse occurred at the input). As always, for causal systems, the
upper limit in equation (4.26) could be replaced by ¢ corresponding to the condition (see
Figure 4.7):

h(t—1) = 0, fort<z 4.27)

() k()

Linear 0

system o

(a) Impulse response of a system

x (1)

Linear
l L_ T system
]
At

(b) Output of system as a superposition of impulse responses

Figure 4.6 Decomposition of input into (orthogonal) impulse functions and output formed as a
sum of weighted impulse responses.
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Figure 4.7 Causal impulse response of a baseband system.

EXAMPLE 4.2
Find the output of a system having a rectangular impulse response (amplitude A volts, width ¢

seconds) when driven by an identical rectangular input signal.

Figure 4.8 shows the evolution of the output as k(s — 7) moves through several different values of ¢.
The result is a triangular function. For a discretely sampled input signal using the standard z-
transform notation [Mulgrew and Grant], where h(n) = x(n) = A + Az + Az + Az the output
signal is discretely sampled with values A2zl 4 242272 4 34273 + 4A% 7 + 3477, ete. Note in

this example that, as the impulse response is symmetrical, time reversal of k(z) to form A(-7)
produces a simple shift along the z-axis.

A hi)‘ ‘(iﬂ A
_I—I_;J——I_
o I L_
@ 1L
® 1L
® I
®

l 11 |‘T i
0/0006]
(c)

Figure 4.8 Convolution of two rectangular pulses: (a) pulses; (b) movement of second pulse with
respect to first; and (c) values of the convolved output.
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(a) Coded waveforms, f(t) and fo(t)
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(b) Convolution result, f;() * f2(2)
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Figure 4.9 Convolution of two coded waveforms (Example 4.3).

EXAMPLE 4.3
Sketch the convolution of the binary coded waveforms f;(¢) and f,(z) shown in Figure 4.9(a).

This is obtained by time reversing one waveform, e.g. f,(¢), and then sliding it past f;(¢). As each
time unit overlaps then, as we are using rectangular pulses, the convolution result is piece-wise
linear. The waveforms have been deliberately chosen so that when f(¢) is time aligned with f;(-t)
then they are identical. The convolution result is shown in Figure 4.9(b). It takes 7 time units to
reach the maximum value and another 7 time units to decay again to the final zero value. If f,(t) is
the impulse response of a filter, this represents an example of a matched filter receiver. This type of
optimum receiver is discussed in detail later (section 8.3.1).

4.3.5 Step response

Consider the system impulse response shown in Figure 4.10. If the system is driven with
a step signal, u(t) (sometimes called the Heaviside step) defined by:

1.0, t>0
u(t) = 0.5, t=0 (4.28)
0, t<0
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Figure 4.10 Causal impulse response of a bandpass system.

then the output of the system (i.e. its step response) is given by:
q(1) = J h(t)u(t — 1) d7 (4.29)

A graphical interpretation of the integrand in equation (4.29) is shown in Figure 4.11.
Since u(t — 7) = 0 for 7 > ¢ and h(z) = 0 for 7 < 0, equation (4.29) can be rewritten as:

t
g(t) = J' h(ou(t — 7) dr (4.30)
0
Furthermore, in the region 0 < 7 < ¢, u(t —7) = 1.0, ie.
t
qt) = J h(z) dr (4.31)
0

The step response is therefore the integral of the impulse response, Figure 4.12.
Conversely, of course, the impulse response is the derivative of the step response, i.e.:

d
h(t) = Eq(t) (4.32)

Equation (4.32) is particularly useful if the step response of a system is more easily
measured than its impulse response.

0:\/" T

Figure 4.11 Elements of integrand in equation (4.29).
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q(® =

0 t

Figure 4.12 Step response corresponding to impulse response in Figure 4.10.

EXAMPLE 4.4
Find and sketch the impulse response of the system which has the step response A(s — 1).

The step response is:

t, 0<r<1
u(t) = A¢—-1 =42-1, 1<t<2
0, elsewhere
Therefore the impulse response is:
d 1, O<t<l
h(f)=‘—1;[1\(t—l)]= -1, l<r<2
0, elsewhere

A sketch of h(t) is shown in Figure 4.13.

4.4 Frequency domain description

In the time domain the output of a time invariant linear system is the convolution of its
input and its impulse response i.e.:

y(0) = h(t) * x(t) (4.33)

B ()

-

0 1 2
-1+

Figure 4.13 Impulse response of a system with triangular step response (Example 4.4).
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The equivalent frequency domain expression is found by taking the Fourier transform of
both sides of equation (4.33) and using the convolution theorem (see Table 2.5):

FT{y(n} = FT{h(») * x(1)}
= FT{h(1)} FT{x(0)) (4.34)
Le. Y(f) = H(f) X(f) (4.35)

In equation (4.35), Y(f) is the output voltage spectrum, X(f) is the input voltage
spectrum and H(f) is the frequency response of the system. All three quantities are
generally complex and can be plotted as either amplitude and phase or real and imaginary
components. At a particular frequency, f,, the frequency response is a single complex
number giving the voltage gain (or attenuation) and phase shift of a sinusoid of frequency
£, as it passes from system input to output, i.e.:

H(f,) = A(f,)e* (4.36)
For a sinusoidal input, x(z) = cos 27 f,¢, the output is therefore given by:
y() = A(f,) cos[2z f,t + ¢(f,)] (4.37)

It follows directly from the Fourier transform relationship between H( f) and h(z) that the
frequency responses of systems with real impulse responses have Hermitian symmetry,

Le.

R{H(f)} = R{HE)) (4.38(a))

S{H()} = -3{H(-/))} (4.38(b))
where R/S indicate real/imaginary parts. Equivalently:

IH()l = |H(=) (4.38(c))

o(f) = —¢(=f) (4.38(d))
EXAMPLE 4.5

A linear system with the impulse response shown in Figure 4.14(2) is driven by the input signal
shown in Figure 4.14(b). Find (i) the voltage spectral density of the input signal, (ii) the frequency
response of the system, (iii) the voltage spectral density of the output signal, (iv) the (time domain)
output signal.

(i) The input signal is given by the difference between two rectangular functions:
-1 t-3
i =300 — {(-3.0If —
o= son{ 5 o 12

The voltage spectral density of the input is given by the Fourier transform of this:

Vin(f) = FT{v;,(1)}
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Vin (t)
h(t) 3
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(a) System impulse response (b) Input signal
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124+ 124+
t * - — —t ———
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(c) Triangular components of output signal (d) Output signal

Figure 4.14 Functions for Example 4.5.

sorfa(i52)]-om]
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2z f
(ii) The frequency response of the system is:
H(f) = FT {h(n)}

fzon(5H)]

1}

n(t—_—

2

(iii) The voltage spectral density of the output signal is given by:

Vi) H(f)

it

Vnut (f )

j12

2rf 2xf

3

2.0 [2 sinc(2f) e‘f“”} = 4sinc2f) e /2!

.2 ;
Sin” Q7f) _jany 4 SID @xf) iy

)

3.0 [ 2 sinc(2f) /@ ] -3 0[ 2 sinc(2f) e/ ]

6 sinc(2f) 2j sinw e /2 = 12j sinc(2f) sin 2 f) e /**f



Frequency domain description 149

sin* (27 f) e—j(Gfrf—%J _ D sin’ 27 f) o IT6F = 05)
(zf)? (mf)
(iv) The time domain output signal could be found as the inverse Fourier transform of V,,,,(f). Itis
easier in this example, however, to find the output by convolving the input and impulse

response, i.e.:

=12

o0

Voul®) = v *h0) = [ vt - ) de

—o0

Furthermore the problem can be simplified if v;,(¢) is split into its component parts:
3 -1 - 131 -3 * 2I1 -1

2 2 2

t—-1 t—-1 t-3 t—1
6| I *TN| — | |-6| 0| — [*O| —
{(2)(2”[(2)(2”

We know that the result of convolving two rectangular functions of equal width gives a
triangular function. Furthermore the peak value of the triangular function is numerically equal
to the area under the product of the aligned rectangular functions and occurs at the time shift of

the reversed function which gives this alignment. The half width of the triangular function is
the same as the width of the rectangular function. Thus:

-5
(2] )

The two triangular functions making up v,,(¢) are shown in Figure 4.14(c) and their sum,
Vo (1), is shown in Figure 4.14(d).

vuut(t)

4.5 Causality and the Hilbert transform

All physically realisable systems must be causal, i.e.:
h(t) = 0, for t <0 (4.39(a))

This is intuitively obvious since physical systems should not respond to inputs before the
inputs have been applied. An equivalent way of expressing equation (4.39(a)) is:

h(t) = u(t)h(t) (4.39(b))

where u(f) is the Heaviside step function. The frequency response of a causal system
with real impulse response must therefore satisfy:

H(f) = FT{u(t)} * FT{h(1)}
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1
= [5 SN+ 55t }*H(f)
1
=3 H(f)+[ 2nf H(f)J (4.40(2))
ie. H(f) = P * H(f) (4.40(b))

Equation (4.40(b)) is precisely equivalent to equation (4.39(b)).
A necessary and sufficient condition for an amplitude response, A(f) = IH(f), to be
potentially causal is:

T 1ln A(H)!
| e ¥<= @4.41)

—o0

The expression potentially causal, in this context, means that a system satisfying this
criterion will be causal given that it has a suitable phase response. Equation (4.41) is
called the Paley-Wiener criterion. It has the important implication that a causal system
can only have isolated zeros in its amplitude response, i.e. A(f) cannot be zero over a
finite band of frequencies.

Returning to the causality condition of equation (4.40(b)), if H(f) is expressed as real

and imaginary parts:

Hx(f) +j Hs(f) *[Hx(f) + j Hs(f)]

izf
1 1
=[j”f*HMfﬁ+[;7*deﬂ (4.42)
and real and imaginary parts are equated, then:
1

Hy(f) = — * H3(f) (4.43(2))

zf

1
Hg(f) = - =f * Hg(f) (4.43(b))

The relationship between real and imaginary parts of H(f) in equation (4.43(a)) is called
the inverse (frequency domain) Hilbert transform which can be written explicitly as:

_ 1T Hs(f)
Hg(f) = - __[ -7 df (4.44)
Equation (4.43(b)) is the forward Hilbert transform often denoted by:
Hg(f) = Ax(f) (4.45)

In the time domain (since the real part of H(f) transforms to the even part of A(¢) and the
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imaginary part of H(f) transforms to the odd part of A(t)) the equivalent operations to
equations (4.43) are:

heven(t) = jsgn(t)hndd(t) (446)
hoaa(t) = = j sgn(®)heyen(t) (4.47)

Notice that, unlike the Fourier transform, the Hilbert transform does not change the
domain of the function being transformed. It can therefore be applied either in the
frequency domain (as in equation (4.43(b)) or in the time domain. Table 4.1 summarises
the frequency and time domain Hilbert transform relationships.

Table 4.1 Summary of frequency and time domain Hilbert transform relationships.

—j sen(t)x(1) I;r X(f) = -;—; * X(f)
1T HT; HT, T
(1) ';r X(f)

Tl HT, HT, I 7T

-1, FT ,
x(1) = = x(t) o +j sgn(HX(f)

(HT, is the time domain Hilbert transform, HT; is the frequency domain Hilbert transform.)

The time domain Hilbert transform is sometimes called the quadrature filter since it
represents an all-pass filter which shifts the phase of positive frequency components by
+90° and negative frequency components by —90°. This operation is useful in the
representation of bandpass signals and systems as equivalent baseband processes (see
section 13.2). It also makes obvious the property that a function and its Hilbert transform
are orthogonal.

EXAMPLE 4.6

Establish which of the following systems are causal and which are not: (i) h(¢) = Az — 3);
(i) h() = e~ 197%; (i) A(r) = w(n)e™; (v) H(f) = €5 (v) H() = TI(F); (vD) H(f) = A(f - 3) +
A +3); (vid) H(f) = (1 — A+ f2).

(i) A(t-3) represents a triangular function which is centred on ¢ = 3 and which is zero for £ <2
and ¢ > 4. It is therefore a causal impulse response.
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(i) ¢ represents a Gaussian function centred on ¢ = 10. Since it only tends to zero as t — Feo
it represents an acausal impulse response.

(iii) u(r)e™ is causal by definition since the Heaviside factor ensures it is zero for t < 0.

(iv) e’ ’ represents a Gaussian frequency response. Since Gaussian functions in one domain
transform to Gaussian functions in the other domain the impulse response of this system is
Gaussian. The system is therefore acausal as in (ii).

(v) TI(f) is a strictly bandlimited frequency response. The impulse response cannot therefore be
time limited and is thus acausal. (The impulse response is, of course, sinc(z).)

(vi) A(f —3)+ A(f +3) represents a bandpass triangular amplitude response. It is strictly
bandlimited and therefore an acausal system as in (v).

(vii)To test whether H(f) is causal we can find out if Hg(f) is the Hilbert transform of Hg( .

— 1
H) = 1o ) =

In the absence of Hilbert transform tables:

N 1 1 1 1
Half) = =71 pm = _JQE 7

—oo

|

1

-
—;_£¢(¢2—2f¢+f2+1) @

Using a table of standard integrals (e.g. Dwight, 4th edition, Equation 161.11):

o1 ¢ 2f I )
Haf) = n{Z(f2+1) ln(¢2—2f¢+f2+1 j+2(f2+1)j¢2—2f¢+f2+1 d¢L

The logarithmic factor in the first term in square brackets above tends to zero as ¢ — + oo, The
integral in the second term is also standard (e.g. Dwight, 4th edition, equation (160.01)) giving:

il 2 [ 26 -2/) ]

Ae(f) = — &
a(f) | FrDvarinoar " | Yagrrn-ar

_"1 f -1 “ o f
“7f2+1[ta" (¢—f)]_,," Tr1
= Hy(f)

Thus Hq(f) is the Hilbert transform of Hy(f) and H(f) therefore represents a causal system.

4.6 Random signals and linear systems

The effect of a linear system on a deterministic signal is specified completely by:

y() = h(®) * x(t) (4.48)
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or, alternatively, by:
Y(f) = H(f)X(f) (4.49)

Random signals cannot, by definition, be specified as deterministic functions either in the
time domain or in the frequency domain. It follows that neither equation (4.48) nor
equation (4.49) is particularly useful for information bearing signals or noise. In practice,
however, the two properties of such signals which must most commonly be specified are
their power spectra and their probability density functions. The effects of linear systems
on these signal characteristics are now described.

4.6.1 PSDs and linear systems

The most direct way of dertving the relationship between the power spectral density at the
input and output of a linear system is to take the square magnitude of equation (4.49), i.e.:

Y (f)? = IH(HX(HP
= IH(HPIX(f)I? (4.50)
Since IY(f )2 and 1X( f )? are power spectral densities equation (4.50) can be rewritten as:
Gy(f) = IH(fIPG.(f) (V*/Hz) (4.51)

If the system input is an energy signal then the power spectral densities, equations (2.52)
and (3.49), are replaced by energy spectral densities, equation (2.53):

E\(f) = IH(f)PE(f) (V’s/Hz) (4.52)
The equivalent time domain description is obtained by taking the inverse Fourier
transform of equation (4.50):

FTHY(f) Y'()) = FTTHH(OH (H) * FTH{X(HX () (4.53)
Using the Wiener-Kintchine theorem (or equivalently the conjugation and time reversal
Fourier transform theorems, Table 2.5):

Ry (t) = Rpy(7) * Ry (1) (4.54)

where R is the correlation function and the double subscript emphasises auto- or self-
correlation. It is almost always the frequency domain description which is the most
convenient in practice. As an example of the application of equations (4.51) and (4.52)
the noise power spectral density and total noise power at the output of an RC filter are
now calculated for the case of white input noise.

EXAMPLE 4.7
Find the output power spectral density for a simple RC filter when it is driven by white noise.

What is the total noise power at the filter’s output?
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{H()|

|
t
i
|
|
|
|
1

Y

~fs O fis f

GASf) _ 2 Gi(f)
T—IH(f)I 5

1
|
1
1
|
|

~fsas O fiop f

Figure 4.15 NPSD at output of single pole RC filter driven by white noise. (G(f) is the one sided
power spectral density.)

Figure 4.15 shows the problem schematically. The power spectral density at the filter output is:

G,(f) = IH(fI? G(f)
The frequency response of the filter is given by:
1
Y+ j(f1f3ap)
where fy 5 is the filter —3 dB, or cut-off, frequency. Substituting:
2

G:(f)

H(f) =

1
1+ j(Sf1 frap)
N 1
C L+ (f fap)?
Interpreting G;(f) and G,(f) as one sided, the total noise power, N, at the filter output is:

G,(f) =

Gi(f)

N

j: G,(f) df
0

1]

¢ 1
— 7 6N 4
! T+ iy DY
Using the change of variable u = f/ f;45 and remembering that the input noise is white (i.e. G;(f} is
a constant, Figure 4.15) then:
[
N = Gir!‘mfsdyd“
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T
Gifsp | —— du = G; fam [tan™" uly
. 1+ u?

G fap 72 (V¥

4.6.2 Noise bandwidth

The noise bandwidth, By, of a filter is defined as that width which a rectangular
frequency response would need to have to pass the same noise power as the filter, given
identical white noise at the input to both. This definition is illustrated in Figure 4.16. It
can be expressed mathematically as:

tIH(HP
= | —-df (4.55)
N JIH(f,)P

where f, is the frequency of peak amplitude response. Notice that noise bandwidth is not
equal, in general, to the —3 dB bandwidth. (For the single pole lowpass filter noise
bandwidth is larger than the —3 dB bandwidth by a factor #7/2 (see Example 4.7). In this
case, for white noise calculations, the use of the 3 dB bandwidth in place of noise
bandwidth would therefore lead to a noise power error of 2 dB.)

4.6.3 Pdf of filtered noise

Not only the power spectral density of a random signal is changed when it is filtered but,
in general, so is its probability density function. The effect of memoryless systems on the
pdf of a signal is discussed in section 4.77. Most communications subsystems, however,
have non-zero memory. Unfortunately in this case there is no general, analytical, method
of deriving the pdf of the output from the pdf of the input. There is, however, an
important exception to this, for which a general result can be derived. This is the pdf of
filtered Gaussian noise. Consider Figure 4.17. The output noise, n,(t), is given by the
convolution of the input noise, n;(t), with the impulse response of the filter or system,
le.:

n () = J' h(t — 7) ni(z) dr (4.56)

F:OlE
1.0

0.5

i, 0
Figure 4.16 [llustration ofnmf”e bandwidth, By.
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Notice that the output can be interpreted as a sum of weighted input impulses of strength
n;(t)dz, the weighting factor, (s — 7), depending on the time at which the individual
input impulses occurred. If n;(¢) is white Gaussian noise then the adjacent impulses are
independent Gaussian random variables (since the autocorrelation of n;(t) is impulsive).
The output noise at any instant, e.g. n,(t;), is therefore a linear sum of Gaussian random
variables and is consequently, itself, a Gaussian random variable. Thus:

Filtered white Gaussian noise is Gaussian

The above resuit is easily generalised in the following way.

Consider the frequency response in Figure 4.17 to be split into two parts as shown in
Figure 4.18. White Gaussian noise at the input of H,(f) has been shown to result in
(non-white) Gaussian noise at the output of H,(f). Applying the same reasoning,
however, the input to H,(f) is (non-white) Gaussian noise. It follows, by considering the

n; (t) o— A (,) 0
White, Gaussian, M nf) =] m(h{t-1yd1
noise in N b—o -
(a) System
n; (1)
dt

of oy A At

(b) Interpretation of input as series of impulses with strength n; (1) d

h(t—1)
Av/' N /\I -
of \J .
(c) Weighting factor, at time ¢, for input impulses
no (t)
N y A L
N O‘J 't rt

(d) Output up to time ¢

Figure 4.17 Output as linear sum of many independent, Gaussian, random impulses. ( n(r)is
white, Gaussian, noise but it can only be drawn as a bandlimited process.)

n; (0 o— o n)
White, Gaussian, H,(f) Hy(f) Non-white, Gaussian,
noise in O —o0 noise

Non-white, Gaussian, noise

Figure 4.18 Reinterpretation of H(f) in Figure 4.17 as two cascaded sections.
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input and output of H,(f) that:
Filtered Gaussian noise is Gaussian

The above result is exact and, to some extent, obvious in that if it were not true then the
Gaussian nature of thermal noise, for example, would be obscured by the many filtering
processes it is normally subjected to before it is measured.

4.6.4 Spectrum analysers

Spectrum analysers are instruments which are used to characterise signals in the
frequency domain. If the signal is periodic the characterisation is partial in the sense that
phase information is not usually displayed. If the signal is random, as is the case for
noise, the spectral characterisation is essentially complete. Figure 4.19 shows a
simplified block diagram of a spectrum analyser and Figure 4.20 shows an alternative
conceptual implementation of the same instrument. At a given frequency the display
shows either the RMS voltage or mean square voltage which is passed by the filter when
it is centred on that frequency. In practice the display y-axis is usually calibrated in dBu
given by 20 log,o (Vrus/107%) or dBm given by 10 log;o[(V3ys/Rin)/107°] where dBu

Narrowband Log
BPF Detector amplifier
Signal - -
A g B P e
Y-plates
A P
Sweep Display
generator dBm
veo MM X-plates
f

Figure 4.19 Simplified block diagram of real time, analogue, spectrum analyser.

i “ H(f)
Slig:al — Detector

fo /
A X-plates
Sweep ﬁ;:;r:ncy V
generator control
244 e Mi*:,
/

Display

Figure 4.20 Conceptual model of spectrum analyser.
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indicates dB with respect to a 1 ¢V and dBm indicates dB with respect to 1 mW. (R,
often 50 €, is the input impedance which converts V2o W)

If the signal being measured is periodic, and the filter has a bandwidth which
adequately resolves the resulting spectral lines, then the (dBm) display is a faithful
representation of the signal’s discrete power spectrum. If the signal being measured is a
stationary random process, however, then its power spectral density is continuous and the
resulting display is the actual power spectral density correlated with the filter’s squared
amplitude response, |H(f )I2 (see section 2.6 and equation (2.85)). If the bandwidth of
the filter is narrow compared with the frequency scale over which the signal’s power
spectral density changes significantly, then the smearing of the spectrum in the
correlation process is small and the shape of the spectrum is essentially unchanged. In
this case the signal’s power spectral density in W/Hz can be found by dividing the
displayed spectrum (in watts) by the noise bandwidth, By, of the filter (in Hz). On a dB
scale this corresponds to:

G(f) (dB mW Hz') = Display (dBm) — 10 log,y By (dB Hz) (4.57)

4.7 Non-linear systems and transformation of random
variables

Non-linear systems are, in general, difficult to analyse. This is principally because
superposition no longer applies. As a consequence complicated input signals cannot be
decomposed into simple signals (on which the effect of the system is known) and the
resulting modified components recombined at the output.

There is one signal characteristic, however, which can often be found at the output of
memoryless non-linear systems without too much difficulty. This is the signal’s
probability density function. Mathematically this problem is called a transformation of
random variables. An outline of this technique is given below.

Consider a pair of bivariate random variables X, Y and S, T which are related in
some deterministic way. Every point in the x, y plane can be mapped into the s, ¢ plane
as shown in Figure 4.21. Now consider all the points (xy, y;), (x5, ¥3), ---, in the x,y
plane which map into the rectangle centred on sy, ;. (There may be none, one, or more
than one such point.) Each one of these points (x,, y,) has its own small area dA,, in the
x, y plane which maps into the rectangle in (s, ). The probability that X, Y lies in any of
the areas (x,, y,) is equal to the probability that S, T lies in the rectangle at (s, t;), i.e.:

Y Pxy(in ya) dAy = psr(sy, 1) ds di (4.58)
n

Equation (4.58) can be interpreted as a conservation of probability law.
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Figure 4.21 Mapping of random variables using a transformation (x, y) = (s, 1).

4.7.1 Rayleigh probability density function

When Gaussian noise (Figure 4.22) is present at the input of an envelope (i.e. amplitude)
detector the pdf of the noise at the output is Rayleigh distributed (Figure 4.23). The
derivation of this distribution, given below, is a transformation of random variables and
uses the conservation of probability law given in equation (4.58).

Let X,Y (quadrature noise components) be independent Gaussian random variables
with equal standard deviations, o, and zero means. Equation (3.33) then simplifies to:

pxy(x,y) = o e(%) ;\/—12_” e(%) (4.59)

Let R, © (noise amplitude and phase) be a new pair of random variables related to X, Y
by:

N (4.60(a))
tan™ (y/x) (4.60(b))

(.6 can be interpreted as the polar coordinates of the point x, y as shown in Figure 4.24.)
The area d@dr in the R, © plane corresponds to an area dA = r d@ dr in the X, Y plane,

r

6

04
[
)
ko3l
3’, [v)
5ol
> O
=
B ol
E [+4
] 1 ! ] ] |-
46 -3¢ 20 -lo 0 +lo +20 436 +do x

1 i L1 1 | L 1 ] 11 1 i 1 —

0005 01 1 251020 50 8090959899 99.9 99.995
CD (%) = P (X <x) x 100%

Figure 4.22 Gaussian probability density function, py(x) = [1/(0‘@)]{(*2/2”2) and CD in per-
cent.



160 Linear systems
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Figure 4.23 Rayleigh probability density Sunction, pp(r) = [r/az]e'(’zlz"z), where o is the standard
deviation of either component in the parent bivariate Gaussian pdf.

Figure 4.25 Areain x,y corresponding to rectangle drd@ in r, 6.

Figure 4.25. Conservation of probability requires that:

Pro(r,0) dr d6 = pPxy(x,y)r dodr (4.61)
Therefore:
Pre(r,0) = pxy(x,y)r
2+ y? —r?
- (' 202")- r (W)
Ty e = 557 € (4.62)

Equation (4.62) gives the joint pdf of R and ©. The (marginal) pdf of R is now given by:
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2n
P = [ pro(r,0) do
0

= —Le(%)]fda (4.63)
2ro? . '
ie. pp(r) = é e(%ﬁ) (4.64)

Equation (4.64) is the Rayleigh probability density function shown in Figure 4.23. Since
Pre(r, 8) has no 6 dependence the marginal probability density function of @ is uniform,
Figure 4.26, i.e..

I
Po(8) = 7 (4.65)

(Strictly the RHS of equations (4.64) and (4.65) should be multiplied by the Heaviside
step function, u(r), and the rectangular function, I1(6/27), respectively since the
probability densities are zero outside these ranges.)

4.7.2 Chi-square distributions

Another transformation of random variables common in electronic communication
systems occurs when Gaussian noise is present at the input to a square law device. Let
the random variable X representing noise at the input of a square law detector be
Gaussianly distributed, i.e.:

()
(x) = e\ 207 4.66)
Px ) O'\/E (
The detector (Figure 4.27) is characterised by:
Pe (8)
1
2n
- 0 T ;6

Figure 4.26 Uniform distribution of ©.

X—1 ()} }——y=x?

Figure 4.27 Square-law detector.
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Y = X?

(4.67)

which means that two probability areas in X (i.e. px(x)dx and px(—x)dx) both transform
to the same probability area py(y)dy. This is illustrated in Figure 4.28. Conservation of

probability therefore requires that:

px(x) dx + py(—x) dx = py(y) dy

And by symmetry this means that:
2 px(x) dx = py(y) dy

Thus:

d.
py(») = 2 px(®) d—"
y

and since y = x? then:

b

dx
and:

de _

dy
Therefore:

py(y)

2x

1

2x

= 2 px(x) =—

3 1 1
oN2xm X

Using x =y gives:

pr(y)

1

L

or Ny C

—y
202
9

(4.68)

(4.69)

(4.70)

(4.71(a))

(4.71(b))

(4.72)

(4.73)

(For y <0, Py(y) =0.) Equation (4.73) is, in fact, the special case for N = 1 of a more

(a) pdf of input noise

(b) pdf of output noise

<Y

Figure 4.28 Mapping of two input points to one output point for a square law detector: (a) pdf of

input noise; (b) pdf of output noise.
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general distribution which results from the transformation ¥ = 3% X? where X; are
independent Gaussian random variables with equal variance, o, and zero mean. N, here,
is the number of degrees of freedom of the distribution. The mean and variance of this
generalised chi-square, 2, distribution are, respectively:

Y = No? (4.74(a))
and
ot = 2No* (4.74(b))

The pdf for a y? distribution with various degrees of freedom and ¢ = 1 is shown in
Figure 4.29.

4.8 Summary

Linear systems obey the principle of superposition. Many of the subsystems used in the
design of digital communications systems are linear over their normal operating ranges.
Linear systems are useful and important because they can be described by linear
differential equations.

It is a property of a linear system that its time domain output is given by its time
domain input convolved with its impulse response. The impulse response of a linear
system is the time derivative of its step response. The output (complex) voltage spectrum
of a linear system is the voltage spectrum of its input multiplied by its (complex)
frequency response. A system’s impulse response and frequency response form a Fourier
transform pair.

All physically realisable systems are causal, i.e. their outputs do not anticipate their
inputs. The real and imaginary parts of the frequency response of a causal system form a
(frequency domain) Hilbert transform pair. The PSD of a random signal at the output of
a linear system is given by the PSD at its input multiplied by its squared amplitude
response. The autocorrelation of a random signal at the output of a linear system is the

N A
05

T

041
03H\2
02} 4

0.1 8

I 1 I 1 L.
—

0 2 4 6 8 10 12 14 y

Figure 4.29 Pdf of a chi-square distribution for several different degress of freedom (62 = 1).
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convolution of the input signal’s autocorrelation with the autocorrelation of the system’s
impulse response. The noise bandwidth of a system is equal to the width of an ideal
rectangular amplitude response which passes the same noise power as the system, for
identical white noise at the inputs.

The pdf at the output of memoryless systems, both linear and non-linear, can be found
by the method of transformation of random variables. (Linear memoryless systems have
a trivial effect since they represent simple scaling factors.) No general, analytical
methods are currently known for predicting the pdf at the output of systems with memory.
A useful result for the special case of Gaussian noise, however, is that filtered Gaussian
noise is Gaussian.

Spectrum analysers are widely used to display the power spectrum of signals. For
periodic signals a properly adjusted spectrum analyser will display the signal’s discrete
line spectrum, usually on a decibel scale of power. For random signals the spectrum
analyser displays a good approximation to the signal’s power spectral density. In this
case care is needed in interpreting the absolute magnitude of the spectrum (in W/Hz) if
this information is important. (Often only the shape of the spectrum is required, as the
total power in the signal is already known.)

4.9 Problems

4.1. Classify the following systems (input x(¢), output y(¢), impulse response h(t)) as: linear or
non-linear, time varying or time invariant, causal or non-causal, memoryless or non-zero memory.
(N.B. u(z) is the Heaviside step function.)

(@) y(t) = 3.7x(1), (b) y(t) = 3. Tx(t — 6.2), (c) y(t) = 3. Tx(t + 107%),

(d) y(t) = 3. 7[x(¢ — 6.2) + 0.01], (&) y(t) = x(t) cos(2x501), (f) y(r) = ®(ne,

(g) y(1) = cosRa500)[x(t) + x(t — D], (h) A(t) = u(t) cos[27100(t + 4)]e™, (i) y(6) = x(t)x(t - 2),
) y(0) = didr [x(r + D), () y(1) = x(2) * w@®)e™, (1) y(6) = x(t/3), (m) y(1) = [§ £ x(2") dY’,

() y(6) = 1(1L + x(1)), (0) (&) = x(1) + y(t = 1), (p) (1) = [1 = (= D)]e™, (@) y(©) = sgnlx(1)]
4.2. A circuit is described by the linear differential equation:

dy(t) d’y(r) . dy@)
o + RLC o + L C—_dt3

where R, L and C are constants, x(¢) is the input and y(¢) is the output. Find, by taking the Fourier

transform of the differential equation, term by term, an expression for the frequency response of the

system. What is the amplitude multiplication factor, and phase shift, of a sinusoidal input at the

frequency f = 1/2zVLC)?

4.3. A linear system has the impulse response h(t) = u(t) — u(t — 2). Sketch h(r) and find the

system output when its input is x(¢) = YaII((+ — 1)/2) — YAII((s - 3)/2). What is the system’s step

response and what is its frequency response?

4.4. How might a system with the impulse response given in Problem 4.3 be implemented using

integrators, delay lines, invertors (i.e. amplifiers with voltage gain Gy = — 1. 0) and adders?

4.5. The impulse response of a system is given by A(f) = I((r — 2)/2) and the system’s input signal

is given by x(t) = (2/3) ¢ T1((r — 1.5)/3). Find, and sketch, the system’s output.

4.6. The impulse response of a time invariant linear system is A(¢) = u(£)/(1 + %) where u(t) is the

Ry(t) + 2L =R x(1)
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Heaviside step function. Find, and sketch, the response of this system to a rectangular pulse of unit
height and width.

4.7. The amplitude response of a rectangular low pass filter is given by 1H (f)I = T1(f/(2f,)). Find,
and sketch, the impulse response of this filter if its phase response is: (a) ¢(f)=0; and (b)
¢(f) = sgn(f)z/2.

(N.B. Problems 4.8 and 4.9 presuppose some knowledge of elementary circuit theory.)

4.8. Find the frequency response and impulse response of: (a) an LR; (b) an RL; and (c) a CR filter.
(The input is across both components in series and the output is across the second, earthed,
component alone. L, R and C denote inductors, resistors and capacitors respectively.)

49. An electrical system consists of an RC potential divider (input across series combination of
RC, output across C alone) followed by an ideal differentiator described by y(t) = d/dt [x(¢)]. For
an impulse applied at the input to the potential divider find and sketch: (i) the response at the
potential divider output; and (ii) the response at the differentiator output. Find the frequency
response of the entire system and use convolution to calculate the system output when the system
input is x(¢) = [1((+ — T/2)/T). Sketch the output if the input pulse width equals the time constant
of the potential divider, i.e. T = RC.

(N.B. Problem 4.10 presupposes some knowledge of elementary circuit theory and electronics.)
4.10. An ideal operational amplifier is driven at its non-inverting input by a signal via an R,C
potential divider. It is driven at its inverting input by the same signal via a series resistor R,.
Negative feedback is applied using a resistor R; connected across the operational amplifier’s output
and inverting input. Find the impulse response and frequency response of this electronic circuit
which is commonly used in signal processing.

411. A system has an impulse response h(f)=u(t) e and an applied input signal
x(t) = I{(t — 7/2)/7)t. Find the system’s output signal.

4.12. A raised cosine filter has the amplitude response:

Wil +cos(xfl2f,)],  IfI<2f,
0, If1>2f,

Explain (in a few words) why (strictly) this filter is not physically realisable.

4.13. An electrical system consists of 10 cascaded RC filters. (Each filter is a potential divider
with input across the series combination of R and C and output across C alone.) If operational
amplifier impedance buffers are inserted between all RC filters deduce (without elaborate
calculations) the approximate shape of the system’s amplitude response. (The impedance buffers
merely reduce the loading effect of each RC stage on the preceding stage to a negligible level.)

4,14. What is the —3 dB bandwidth of the system with a one sided exponential impulse response
h(£) = u(t)e™*? If white Gaussian noise with one sided NPSD of 2.0 x 10™ V*/Hz is applied to
the input of this system what is the PSD of the noise at the system output? What is the total noise
power at the system output? What is the output noise power within the system’s —3 dB bandwidth?
What is the pdf of the noise at the system output?

4.15. If the noise at the output of the system described in Problem 4.14 is applied (after impedance
buffering to avoid loading effects) to a second, identical, system, what will be the total noise power
at the (second) system output? What proportion of this total noise power resides in the frequency
band below 1.0 Hz? [6.4 x 1072 V2, 20%]

4,16. A mobile communications system, consisting of a transmitting mobile and receiving fixed
base station, experiences noise at the receiving antenna. Assuming that the noise is spectrally
white, and has variance ¢?, calculate the coherence (i.e. autocorrelation) function for the output of a

‘H(f)|={
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lowpass RC filter attached to the antenna output when the spectral density of the transmitted signal
is given by:

(1 + cos (zw/10)] , lwl < 10
0, otherwise

Sulw) = {

and the square magnitude of the channel frequency response is given by:
2
B + o
What information does this give you about the system? How might it be measured in practice?

4.17. Find the equivalent noise bandwidth of the finite-time integrator whose impulse response is
given by:

\H(@)P =

-
W= 7 (a0 e = T) ine: | T e — 1l 2
4}

4.18. A linear system has the following impulse response: h(t) = e, whent>0and h(t) =0at
other times. The input signal to the above system is a sample function from a random process
which has the form:

X)) = M, —o0< <00

in which M is a random variable that is uniformly distributed from —6 to +18. Find: (a) an
expression for the output sample function; (b) the mean value of the output; and (c) the variance of
the output. [M/5,0.2, 1.92]
4.19. Find the cross-correlation function R,,(z) for a single-stage low-pass RC filter when the
input x(¢) has the following autocorrelation function:

BNy -p

Rxx(T) = T

[0.80 Hz, 1.0 % 1079 V%, 5.0x 107" V?]

4.20. A random variable x has a pdf: px(x) = u(x)5¢>* and a statistically independent random
variable y has a pdf: py(y) = 2u(y)e™. For the random variable Z = X +Y find: (a) pz(0); (b) the
modal value of z (i.e. that for which p(z) is a maximum); and (c) the probability that z > 1.0.
[3.33 exp(—2z) (1 —exp(~32)), 0, 0.305, 0.22]

4.21. Find the pdf of noise at the output of a full wave rectifier if Gaussian noise with a variance of
1 V2 is present at its input. (Note the output y(£) of a full wave rectifier is related to its input x(s)
by y(¢) = Ix(5)l.)

4.22. A signal with uniform pdf: px(x)=0. 5 TI((x — 1)/2) is processed by a, non-linear,
memoryless system with input/output characteristic: y(t) = Sx(¢) + 2. What is the pdf of the output
signal?

4.23. A signal with pdf py(x)= 1/(z(1 + X)) is processed by a square law detector (characteristic
Y = X?). What is the pdf of processed signal?

—o0 < T < o0



Part Two

Digital communications
principles

Part Two, by far the largest part of the book, uses the theoretical concepts of Part
One to describe and analyse communications links which are robust in the
presence of noise and other impairment mechanisms.

Chapter 5 starts with a discussion of sampling and aliasing and demonstrates
the practical problems associated with representing an analogue signal in digital
(pulse code modulated) form. This highlights the care that must be taken to
achieve accurate reconstruction, without distortion, of the original analogue
signal in a receiver. Chapter 5 also describes a variety of techniques by which the
bandwidth of a PCM signal may be reduced in order to allow the effective use of
bandlimited channels. Chapter 6 addresses the fundamentals of binary baseband
transmission, covering important aspects of practical decision theory, and
describes how the spectral properties of baseband digital signals can be altered by
the use of different line coding schemes. Receiver equalisation, employed to
overcome transmission channel distortion, is also discussed. Probability theory,
is applied to receiver detection and decision processes in Chapter 7, along with a
discussion of the Bayes and Neyman-Pearson decision criteria. Chapter 8
investigates optimum pulse shaping at the transmitter, and optimum filtering at
the receiver, designed to minimise transmitted signal bandwidth whilst
maximising the probability of correct symbol decisions.

Chapter 9 presents the fundamentals of information theory and source coding,
introducing the important concepts of entropy and coding efficiency. It is shown
how redundancy present in source data may be minimized, using variable length
coding schemes to achieve efficient, low bit rate, digital speech, and other,
signals. Chapter 10 describes the converse technique, in which transmitted data
redundancy is increased to achieve error correction, or detection, in the presence
of noise.



Chapter 11 analyses the bandpass binary modulation schemes which employ
amplitude, frequency, or phase shift keying. Variants, and hybrid combinations,
of these schemes are then examined which are especially spectrally efficient (e.g.
QAM), are especially power efficient (e.g. MFSK), or have some other desirable
property. Following a detailed discussion of the sources of noise in electronic
circuits, Chapter 12 outlines the calculation of received signal power, noise
power, and associated signal-to-noise ratio, for simple communications links.
Finally Chapter 13 indicates how the performance of a complex communication
system can be predicted by simulation before any hardware prototyping is
attempted.




