CHAPTER 17

Queuing theory for packet
networks

17.1 Introduction

In packet switching, secure bundles of information are assembled, addressed and
transmitted through a network without the neced for dedicated end-to-end connection
paths to be established. The packets are individually transported and delivered by the
network to the required destination. The network additionally ensures that packets are
output in the correct order at the receiver.

Packet switched networks have existed for many years. Early examples were Euronet
which links nine EC countries and Switzerland, running the Direct Information Access
Network-Europe (DIANE) service. In 1981, British Telecom opened its first national
public network, known as the Packet Switched Service (PSS). This system is controlled
by a network management centre, based on duplicated minicomputers. PSS uses the
X.25 protocol (see Section 18.6.1). The most well known network today is the Internet
which supports the information retrieval service known as the World Wide Web (WWW).

The Joint Academic Network (JANET), Figure 18.2, and its successor SuperJANET
are funded by the UK research councils. JANET has a node at every university and runs
on leased lines. It provides a service for the communication of data, such as computer
files and electronic mail, between sites and onward via the Internet (see section 18.7.6).
All these networks introduce queuing, with consequent delays and possible loss of traffic
data.

Queuing theory [Nussbaumer] can be used to model these or other networks where
customers or data packets arrive, wait their turn for handling or service, are subsequently
serviced, and are then transmitted through the network. (Supermarket checkouts, ticket
booths, and doctors’ waiting rooms are all commonly encountered examples of queuing
systems.) Queuing theory was developed originally to model analogue teletraffic but is
now widely applied to digital packet traffic [Tanenbaum]. A queuing system can be
characterised by the following five attributes:
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* The interarrival-time probability density function.

» The service-time probability density function.

* The number of servers, or server processes.

* The queuing discipline.

* The amount of buffer, or waiting, space in the queues.

The interarrival-time probability density function (pdf) describes the interval between
consecutive arrivals. After a sufficiently long sampling time, the arrival times can be
grouped to obtain the pdf which characterises the arrival process.

Each customer requires a certain amount of the server’s time which varies from
customer to customer. To analyse a queuing system, the service-time pdf, like the
interarrival-time pdf, must be known.

The number of servers speaks for itself. Many banks, for example, have one queue
for all customers. Whenever a teller is free, the customer at the front of the queue goes
directly to that teller. Such a system is a multiserver queuing systcm. In other banks,
each teller has his, or her, own private queue. This corresponds to a collection of
independent single-server queues.

The queuing discipline describes the order in which customers are taken from the
queue. Supermarkets use first come, first served. Hospital emergency rooms often use
sickest attended to first. In friendly office environments, shortest job first often prevails at
the photocopy machine. Not all queuing systems have an infinite amount of buffer space.
When too many customers are qucued up in a finite number of available slots, some
customers can get lost or rejected.

This chapter concentrates predominantly on infinite-buffer, single-server systems
using a first come first served queuwing discipline. The Kendall notation A/B/m
[Kleinrock] is widely used in the queuing literature for these systems. A represents the
interarrival-time pdf, B the service-time pdf, and m the number of servers employed. The
probability densities A and B are usually chosen from the following set:

M — Markov (implying an exponential pdf);

D — deterministic (all customers have the same constant value implying an impulsive

pdf);

G — general (i.e. some arbitrary pdf);

E; — Erlang distributed.

The state of the art ranges from the M/M/1 system, about which everything is known,
to the G/G/m system, for which no exact analytical solution is yet available. We will
concentrate on the M/M/1 model. Figure 17.1 shows the queue for such a single server
process. We now need to develop a mathematical analysis for queuing systems which can
be used to show what limits or restricts the practical performance of these systems. This
is achieved by first examining arrivals only, beforc progressing to model the combined
arrival and service processes within the queuing buffer memory.
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Figure 17.1 Single server queue model and outcomes for a counting process: (a) arrivals only;
(b) arrivals and departures.

17.2 The arrival process

We make the following assumptions:

+ The arrival process is memoryless in the sense that any arrival is statistically
independent of all other arrivals;

« The arrival process is statistically stationary. (This implies that the probability of an
arrival occuring in any small time interval depends only on the interval’s width and
not its location in time.)

Queuing systems in which the only transitions are to adjacent states are known as
birth-death systems, which is a mathematician’s terminology for a counting process with
both arrivals and departures. We are considering, at present, only arrivals.

We have to model the evolution of the system from one state to another [Gelenbe and
Pujolle] where the state is synonymous with the number of customers waiting for service.
The approach via the Markov probability chain [Chung] is inappropriate, since the
probability of transition between any two states at any given point in time, ¢, is zero.
While we cannot characterise the probability of transition, we can characterise the rate of
transitions between two states. Suppose that for two particular states the rate of
transitions between them is a constant A. What we mean by this is that in a time 57 we
can expect an average of A §¢ transitions. If &¢ is very small theh A &t is a number much
smaller than unity, and the probability of more than one transition in time &¢ is
vanishingly small. Under these conditions, we can think of 4 &t as the probability of one
transition (P,) in time 8t, and (1 — 4 &8t) as the probability of no transition (Py) in this
time.

This leads us to a transition diagram and associated set of differential equations. The
transition diagram, Figure 17.2, associates a node with each state. Within node j we
denote the probability of being in that state at time # as P (7).

17.2.1 pdf for j arrivals in  seconds

Assume arrivals (A) are governed by a randomly distributed pure birth process as shown
in Figure 17.3 where the arrival rate does not depend on the state of the system. The
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Figure 17.3 Exumple of randomly distributed arrivals (A) with interarrival time t.

only arrivals then the probability of being in state j after 6¢ seconds is dependent on P;
and P;_:
Jj-1

Pi(t+61) = P(t) (1- 4 8t)+ P, (1) A 61 (17.1)

hence:
P;t+d1)-P;(r)

= AP (1) = P;(1))

St
Now let 6t - 0:
dpP (1)
el AP (1) — P;(t)) 17.2)
For j =0, P;_; =0, as we cannot have less than zero arrivals. Therefore:
dPy(1)
——= = — APyt 17.3
ar o(t) (17.3)
The solution to equation (17.3) is:
Po(t) = e* (17.4)

which represents the probability of no arrivals in time ¢. This is plotted in Figure 17.4,
starting with a probability of 1 at ¢ =0, decaying asymptotically to zero with an
exponential time constant of .. Thus at ¢t = 1/4, Pg(1/4) =0.37. This is the start of the
derivation of the Poisson distribution for the number of arrivals j in ¢ seconds for an
exponential interarrival time distribution, with a mean arrival rate of A. It can further be
shown that:

P;() = (’1],")] e (17.5(a)
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Figure 17.4 shows that the probability of only one arrival, P;(z), peaks at the time interval
t = 1/A. If Figure 17.4 is plotted with the horizontal axis as offered traffic, A¢, then the
peak value of P,(¢) occurs at an offered traffic value of unity. For longer time intervals, it
becomes increasingly likely that there will be more than one arrival. The probabilities of
there being two or three arrival events, P,(#) and Px(t), peak at later time intervals and
also have progressively smaller probability peaks, so that, for any specified time interval,
all the probabilities sum to unity as required, i.e.:

P =1 (17.6)
j=0

17.2.2 CD and pdf for the time between arrivals

If the time between successive arrivals is 7, as in Figure 17.3, the probability that 7 is less
than, or equal to, some value of time ¢, P(r < t), is given by:

P(zst)y = 1-P(rt>1) (17.7(a))
But P(r > t) is the probability of no arrivals in time 7. Thus, for the Poisson process:

P(t>1t) = Pyt) = e ™ (17.7(bY)
hence:

P(r<f) = 1—e™ (17.7(c))

Equation (17.7(c)) is the cumulative distribution (CD) function, equations (3.10) and

|
|
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Figure 17.5 (a) pdf; and (b) CD for time between successive arrivals.

(3.13(b)), for the time between arrivals, Figure 17.5. This implies an exponential

interarrival probability density function (pdf). As shown in section 3.2.4, the pdf is

obtained by differentiating the CD, i.e. equation (17.7(c)):

dP(r £1) _ e H
dt

where the mean or average value of ¢ is 1/1 and the variance (or second central moment)
is 1/4% (see section 3.2.5).

Pt<t<t+dt) = p@t) = (17.7(d))

17.2.3 Other arrival patterns

These can be specified to be:

» Unpunctual — which occur at t =a+E,,2a+E,,---, ma+E,, where E,, is a
random variable;

* Discrete-time arrivals — these can only occur at a discrete set of allowed instants;

» Non-stationary — where the probabilities vary with time;

» Correlated — where the arrival rate may be affected by the state of the system.

17.3 The service process

The service or transmission mechanism is described by the service time distribution,
which defines the capacity, or number of servers, which must be deployed to handle the
given traffic.

17.3 1 Service time distributions

As for arrival times there are two extremes. We can have constant (deterministic) service
times or alternatively we can have ‘completely random’ (stastically independent) service
times, the latter again leading to an exponential pdf given by:

P(t)=pe* (17.8)

for a service rate of u customers/s, Figure 17.1. As before, the mean value, or average
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service time, is 1/u and the variance is 1/4%. The statistical independence of succesive
service times (resulting in an exponential distribution of service time pdf) means that
service time, like arrival interval, has been modelled as a Poisson process. It should be
noted, however, that:

» service times may be discrete (word or packet multiples);
= service time may be non-stationary.

The queuing discipline determines how customers are selected from the queue and
allocated to servers.

17.3.2 Single server queues

These typically use one of the following queuing disciplines:

* First-in-first-out (FIFO) — the simple queue;

* Last-in-first-out (LIFO or last come first served, LCFS);
¢ First-in-random-out (FIRO);

* Priority queuing.

17.3.3 Multiserver queues

Here service is allocated according to rules such as:

* Rotation — customers assigned in strict rotation to each queue;
* Random selection — customers themselves decide which queue to join;
* Single queue — customer at the head of queue goes to the next available server.

17.4 The simple single server queue

It is instructive to find the distribution of queue lengths and waiting times in an M/M/1
system, where total waiting time equals queuing time plus service time.

17.4.1 Simple queue analysis

We define the state of the system as the number of customers waiting (i.e. state m implies
m customers waiting or a queue of length m), and denote the probability of being in a
state m at time ¢ as P, (¢). Assume, when the system is in state m, customers arrive
randomly at an average rate 1,, and are randomly serviced at rate u,, (i.e. the average
service time is 1/4,,).

What is the probability of such a system, Figure 17.6, being in state m at time ¢ + 51?7
This is obtained by extending equation (17.1) to include departures as well as arrivals:

Pt +81) = Pp (A1 81+ Py (D1 61+ Pr(1)(1 = f1,81)(1 = A, 61)
= Pm—l (t)/lm—lé‘t + Pm+l(t);um+15t + Pm(t)[l - (/lm + ﬂ'm)ét] (179)
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Figure 17.6 State transition-rate diagram for a simple queue.
(for small &§t). Therefore:
P,(t+6t)-P,(1)
ot
In the limit as 5t — O:

dP (1)
" Amaa Pt + i) P () = (U + Ay) P (1) (17.11)

(for m 20 where P_i(t) = 0). This is the full Chapman-Kolmogorov equation [Gelenbe
and Pujolle] for arrivals and departures. It states that the rate of increase of probability
with time for state m is equal to the rate at which transitions into that state, from states
m—1 and m+ 1, are occurring (multiplied by the current probability of those states)
minus the rate at which transitions out of state m are occurring (multiplied by the current
probability of state m). To solve equation (17.11) we must specify the initial conditions.
The process starts in state zero, as there are no arrivals before time #, i.e.:

= A’m-—IPm—l(t)'F/um+le+l(t)_(#m+Am)Pm(t) (1710)

1, m=90
Pm(t0)={0 m>0

and assuming a stationary solution so that dP,,(t)/dt = 0 then:

0=y Ppy + i1 Pyt — (U + 1) Py (17.12(a))
where:

Py =P,y=---= (17.12(b))

Ay = A,=--=0 (17.12(c))

Mo = py=---= (17.12(d))
and:

Po+ P +Py+-- =1 (17.13)

A typical queue result is shown in Figurc 17.7. Here the vertical steps in the solid
staircase occur with new customers arriving while the vertical steps in the dashed
staircase imply service has been completed for these customers. The horizontal
displacement measures the queue plus service time for each customer or unique arrival.
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Figure 17.7 Typical queue performance showing customer (packet) arrivals and departures (after
service).

17.4.2 Queue parameters

The total delay in a time ¢, y(¢), is the sum of the waiting times. If the total number of
customers who have arrived in a time ¢ is denoted by a(¢) = At then:

!
average delay, T = & (17.14(a))
o(t)
_r@®
average queue length, N = - (17.14(b))
t
average arrival rate, A= %) (17.14(c))

Now we can rewrite the average queue length as N = y(¢)/t = (y(t)/a(t)) X (a(t)t),
where N is given by the sum, over all m, of the product of queue length, m, and its
probability, P,,, to obtain Little’s result:

(=)

N =Y mP, =T (17.15)

m=0
The performance of a queuing system is controlled by its utilisation factor, defined as:

demand for service

- (17.16)
maximum rate of supply

p:




The simple single server queue 649

where the demand for service = arrival rate X mean service time = A/x. This is also a
measure of the traffic intensity in erlangs [Dunlop and Smith], named after the Danish
pioneer of teletraffic theory. (In telephony systems the total applied traffic in erlangs is
equal to Az where A is the arrival rate for call connections and 7 is the average call
duration. A circuit carrying one call continuously then carries one erlang of traffic.)

The service rate is often controlled directly by the output transmission rate and packet
length. For example a 2 Mbit/s link (Chapter 19) with 500 byte packets and 8-bit bytes,
has a service rate, u=(2X 106)/(500>< 8) = 500 packet/s. For single server queues,
maximum capacity or rate of supply is 1 s of service/s, i.e. the maximum rate of supply =
1. In this case:

p = Mu (17.17)

and p < 1 is required to prevent server overload.
17.4.3 Classical queue with single server

Assume a Poisson arrival process and exponentially distributed service times so that the
arrival and service rates are independent of the state of the system. Thus A, simplifies to
A and u,, simplifies to x. Further assume that infinite queuing space is available and that
customers are served on FIFO basis.

From equation (17.5) and Figure 17.6, by applying the conditions of equilibrium or
detailed balancing, the input and output transitions to and from a state must occur at the
same rate. Thus starting with state zero, APy = Py, these balances can be written as:

A
Pl = - P()
U
/12
P, = ? Py
A, m
Py = (;j Py = p"Py (17.18)

But %> P, =1, as shown previously (Figure 17.4 and equation (17.6)). Now
22 0P =Zregp"Po=PoZmop™ =1 and the sum of the geometric  series
= op™ = /(1 - p). Therefore:

A
Pp=1-p=1-— (17.19)
u
Figure 17.8 (curve (a)) shows, as p increases from O to 1, how the probability of an

empty queue, Py, decreases. Also by applying equation (17.18):
P, = p"Py = p"(1-p) (17.20)

implying a geometric distribution for P,,. The probability of the single server being busy
is 1 — Py =p. p <1 ensures that the server has more capacity than is required. Figure
17.9 shows a typical queue length pdf, for p = 0.5.
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Figure 17.8 Average queue size or length: (a) probability of an empty queue; (b) mean queue
length, N, in packets; (c) probability that queue length exceeds 4.

P, T Y P.=1
051
04 |
03|
02

o]
0.0 ] |
0 1 2 3

Figure 17.9 Queue length pdf for p = .

b

EXAMPLE 17.1

For a single server queuing system with Poisson distributed arrivals of average rate 1 message/s and
Poisson distributed service of capacity 3 messages/s calculate the prabability of receiving no
messages in a S s period. Also find the probabilities of queue lengths of 0, 1, 2, 3. If the queue
length is limited to 4 what percentage of messages will be lost?

From equation (17.5(a)):
Py(t) = eV
and A =1andt =5 fora5 s period. Thus the probability of no arrivals in a 5 s period is given by:
Py(5) = 7 = 0.00674
Now from equation (17.18):
- (2
yli

and from equation (17.19):

y) 1 2
Py=1-Z=1--=2%
0 P 3 3
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Thus the various queue lengths can be calculated as:

bl 22
"T373 9

1V 2 2
P, ==Xz = =
2 3) 327

v 2 2
P:—- - = —
} (3)X3 81

This differs slightly from Figure 17.9 in that the P, value is larger and, in consequence, the
subsequent magnitudes fall off more rapidly. Finally for a queue length limited to 4 the probability
of exceeding this restricted length is given by:

Pm>4) = 1-P(m<4) = 1 —(Py+P,+Py+P3+Py)

124202020 2 ) 00041 = 0.41%
- 379727781 243) R

1]

17.4.4 Queue length and waiting times

The average queue length, equation (17.15), N =X mP,, = (1 — )L ymp™. Further,
as the sum of the geometric series X, ymp™ = p/(1 — p)? the mean queue length is given
by:

N= 3 P,=-—— (17.21)

m = k+1 1- P

Figure 17.8 (curve (b)) shows how N increases with increasing p. At p = s, N =1 and
for p > ', N increases above unity. As traffic intensity increases and p approaches 1 the
queue length becomes infinite. If the queue is restricted to some finite value k then the
probability of exceeding this value is given by:

2 Pn

P(m>k) =
m=k+1
=(-p) 2 "
m = k+1
oo k
= (l—p){z - p'"]
m=0 m=0
L 1=
= (1 p)[l_p— l—p:|
= pktl (17.22)

This is shown in Figure 17.8 (curve (c)) for various values of p. Clearly when p exceeds
about 0.8 there is a problem. To find average delay or waiting time, 7', we use Little’s



652 Queuing theory for packet networks

result, equation (17.15) and equation (17.21):

average queue length N P
average arrival rate A Al = p)

or, using equation (17.17):
T = 1 1
u(l-p) u—Aa

Average delay (normalised by p) is plotted in Figure 17.10, against p in the range 0 < p
< 1, and it is this key result which forms the basis of network delay analysis. When
constrained by a finite queue length of k, then EfnzoPm =1= POZf,,:O p™. For this case
Po=(1=p)(1=p*?).

For packets transmitted over a link, at a bit rate of R, bit/s with packet size K bits, the
mean packet delay is, from equation (17.23(b)):

1
T = ——— 17.24
Ry/K -4 ( )
where R,/K represents the packet transmission or service rate, 4, in packet/s and 4 is the
packet arrtval rate.

(17.23(b))

EXAMPLE 17.2
Consider a switch at which packets arrive according to a Poisson distribution. The mean arrival
rate is 3 packet/s. The service time is exponentially distributed with a mean value of 100 ms.
Assume the packet comprises 70 8-bit bytes and the output transmission rate is 5.6 kbit/s. How
long does a packet have to wait in the queue?
The mean service rate is u = 5600/(8 x 70) = 10 packet/s. From equation (17.23(b)):

T = Uu(d-p)) = 1pu-2)
and we find that the mean packet delay is T = 0. 143 s for queuing plus service. Since the mean
service time is 100 ms, the mean queuing time is therefore 143 — 100 = 43 fns.

=

|
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m

| | | ] {
0 02 04 06 08 10 op

Figure 17.10 Average time delay (T ) for queue against p.
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Calculations, such as those shown above, allow us to model the delays on packet data
links. The mean overall network delay is given by the sum of the transmitted packets
times their delay divided by the total number of transmitted packets. (This type of queue
analysis is also used for determining the performance of the Banyan switch networks in
Chapter 18 in order to find their blocking performance.)

17.5 Packet speech transmission

Early packet networks for communication (see Chapter 18) were:

« store-and-forward, hard-wired, long-haul networks, e.g. the American ARPANET
(with a channel capacity of 50 kbit/s), and the British SuperJANET (Chapter 18);

» satellite networks, e.g. the American Atlantic SATNET (with a channel capacity of 64
kbit/s);

» radio networks, €.g. the American PRNET (with a channel capacity of 100 to 400
kbit/s, for local data distribution).

The most general distinction is that, unlike the circuit switched TDMA telephone
system (Figure 17.11), in a packet switched network the individual data (D) and voice (V)
packets are switched (Figure 17.12) in accordance with the header information within
each packet. The interface between the user and a packet network can be a data terminal,
a host computer, or a packet voice terminal which comprises a telephone handset with a
full range of control and signalling capabilities.

17.5.1 The components of packet speech

Analogue speech must first be converted into a digital sequence by a coder using
waveform processing, e.g. delta modulation, Figure 5.28, or other coding techniques such
as LPC, section 9.7. The vocoder is favoured when there is limited channel capacity and
speech must be compressed to lower data rates than PCM. LPC produces fewer packet/s
(1.7 to 7.4) than delta modulation which generates 9.4 to 38.5 packet/s at a bit rate of 16
kbit/s.

—— 2
b Multiplex b,a, LI Demultiplex d
Circuit
switching
¢ —— b ) —1b
d Multiplex | d.c. i €12 Upemultiplex
I ¢
Fixed

bit rate

Figure 17.11 Conventional circuit switched network (e.g. TDMA digital telephony transmission
example, as described in section 6.5).
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Figure 17.12 Packet switched network with variable rate traffic where voice rate exceeds the input
data rate.

The digital bit stream is next partitioned into segments and some control (header)
information added to each segment to form a packet. The control information consists of
a time stamp and a sequence number, Figure 17.13, to assist reconstruction at the
receiver. To reduce the bandwidth required for speech transmission, silences between
bursts of speech are not packetised or transmitted. The time stamp enables the receiver to
generate the appropriate duration of silence before processing the subsequent speech
samples. Time stamps also allow reordering of packets which are received out of order.
Since the time stamp cannot differentiate silence from packet loss, a sequence number is
included to allow detection of lost packets.

It is important that a continuous stream of bits is provided at the receiver in order to
produce smooth speech. This is achieved by delaying the arriving packets at the receiver
queueing buffer, Figure 17.14. The size of this buffer must be sufficiently long to avoid
packet loss due to overflow. Normally the delay will be chosen so that, statistically, a
large proportion (e.g. 95%) of packets will be expected to arrive in the time allocated to
the buffer delay, which is usually in the range 100 to 170 ms. The delay must not be so
long that it dominates the performance of the speech transmission system, however.

Ideally ~50 ms

Header Data

e Y FEC = error control bits
e S~ DYV =datalvoice bits

Vd ~

Time Sequence FEC |DIV
stamp no.

Sample | Sequence | o | p | -<e— Anexample
no. 44 no. S

Figure 17.13 Details of the header information carried within a data packet.
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Figure 17.14 Packet speech transmission system with inherent transmission delays.

EXAMPLE 17.3

An X.25 packet switch has a single outgoing transmission link at 2 Mbit/s. The average length of
each packet is 960 bytes. If the average packet delay through the switch, assuming an M/M/1
queue, is to be less than 15 ms, determine: (i) the maximum gross input packet rate to the switch;
(i) the average length of the queue; (iii) the utilisation factor through the switch if each packet in
the input is converted into ATM cells having 48 bytes of data and a 5 byte overhead (see section
19.7.2 for an explanation of ATM).

In the X.25 switch the outgoing link is 2 Mbit/s. An average packet is 960 bytes or 7680 bits. If
service time is equal to packet length, then: g = 2 x 10%/7680 = 260. 4 packet/s
(1) Now if T £ 15 ms, from equation (17.23(b)):

1 1

T = = < 15%x107° and pn = 0.744
u(-p)  260.4(1-p) r

Maximum gross input rate is A = pu = 0.744 x 260.4 = 193.7 packet/s.

(ii) Average length of queue from equation (17.21) is:
N = p/(1 - p) = 2.91 packets

(iii) ATM switch
Each packet is 960 bytes, and corresponds to 960/48 = 20 ATM cells.
The cell input rate is therefore 20 x 193.7 = 3,874 cell/s.
Now the output rate is 2 X 10%/(48 + 5) x 8 = 4,717 cell/s. Therefore p = 3874/4717 = 0.821.
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17.5.2 Speech service performance

Three key parameters that describe the performance of a packet speech service are end-
to-end delay, throughput and reliability. Delay is the time between speech being
presented to the system, to the packet carrying that speech being played at the
loudspeaker. Experimental tests show that few people notice any quality degradation if
delay is kept below 0.3 s while a delay above 1.5 s is intolerable. Throughput is limited
by the processing capability of the nodes. Reliability is defined as the proportion of
packets that arrive at the destination in time to be used to reconstruct the speech.

Appropriate choice of packet size and rate can minimise delay and allow high
throughput. In particular we must control the number of bits in the message header.
Since the header is constant for every packet, regardless of size, to maintain high channel
utilisation the number of speech bits per packet should be maximised. Large packets are
also more desirable from the point of view of network throughput. However, to minimise
the effects of lost packets and delay at the transmitter, packets should be short and,
ideally, a packet should contain no more than 50 ms of speech. The trade-off is
particularly difficult for narrowband speech, e.g. using LPC, because 50 ms of 2.4 kbit/s
speech comprises only 120 data bits. Typical packet size for speech transmission across
the Internet is about 300 bits comprising 100 to 170 ms speech segments. Channel
loading information should be provided to the voice terminal so that packet rate and size
can be varied according to the network load. In cases where the network is lightly
loaded, it is capable of supporting a higher packet rate, hence smaller packets with less
delay are used while, if the network loading is high, packets are made larger and packet
rate is reduced.

17.6 Summary

Packets are groups of data bits to which have been added (as héaders and/or trailers)
addressing and other control information to facilitate routing through a digital data
network. Queuing theory can be used to model packet behaviour at the switching nodes
of a network and, in particular, can be used to predict average packet delay, average
queue length and probability of packet loss at a node, given the packet interarrival-time
pdf, the packet service-time pdf, the number of servers, the queuing discipline and the
queuing storage space. For real-time applications, such as packet speech, resources can
be saved by not transmitting empty or ‘silent’ packets. This necessitates packets being
time stamped, however, for the receiver to regenerate the appropriate speech gaps.

In current Ethernet based networks data rates are in the range 10 to 100 Mbit/s and
propagation delays (typically less than 5 us) are small compared with the time required to
transmit a 1 kbit packet. With the trend towards Gbit/s optical fibre links, operating over
long distances, propagation delay becomes much longer than the packet duration, which
will significantly alter the analysis of these systems.
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17.7 Problems

17.1. The number of messages arriving at a particular node in a message switched computer
network may be assumed to be Poisson distributed. Given that the average arrival rate is 5
messages per minute, calculate the following:

(a) Probability of receiving no messages in an interval of 2 minutes. [4. 5%107]

(b) Probability of receiving just 1 message in the next 30 s. [0.2]

(c) Probability of receiving 10 messages in any 30 s period. {2.16x 10

17.2. In Problem 17.1: (a) What is the probability of having a gap between two successive
messages of greater than 20 s7 (b) What is the probability of having gaps between messages in the
range 20 to 30 s inclusive? [0.189, 0.106]

17.3. Assuming a classical queue with a single server, determine the probabilities of having: (a) an
empty queue, (b) a queue of 4 or more ‘customers’. You should assume that the utilisation factor
for the service is 0.6. [0.4, 0.13]

17.4. If the queue length in Problem 17.3 is limited to 10, what percentage of customers are lost to
the service? [0.36%]

17.5. A packet data network links London, Northampton and Southend for credit card transaction
data. It is realised with a 2-way link between London and Northampton and, separately, between
London and Southend. Both links operate with primary rate access at 2 Mbit/s in each direction. If
the Northampton and Southend nodes send 200 packets/s to each other and the London node sends
50 packets/s to Northampton what is the mean packet delay on the network when the packets have a
mean size of 2 kbit? [1.275 ms]



