CHAPTER 13

Communication systems
simulation

13.1 Introduction

Most of the material in the preceding chapters has been concerned with the development
of equations which can be used to predict the performance of digital communications
systems. An obvious example is the error function formulae used to find the probability
of bit error for ideal systems assuming zero ISI, matched filter receivers and additive,
white, Gaussian noise. Such models are important in that they are simple, give instant
results, and provide a series of ‘reference points’ in terms of the relative (or perhaps
potential) performance of quite different types of system. In addition they allow
engineers to develop a quantitative feel for how the performance of systems will vary as
their parameters are changed. They also often provide theoretical limits on performance
guarding the design engineer against pursuit of the unobtainable.

The principal limitation of such equations arises from the sometimes unrealistic
assumptions on which they are based. Filters, for example, do not have rectangular
amplitude responses, oscillators are subject to phase noise and frequency drift, carrier
recovery circuits do not operate with zero phase error, sampling circuits are prone to
timing jitter, etc.

Hardware prototyping during the design of systems avoids the limitation of idealised
models in so far as real-world imperfections are present in the prototype. Designing,
implementing and testing hardware, however, is expensive and time consuming, and is
becoming more so as communications systems increase in sophistication and complexity.
This is true to the extent that it would now usually be impossible to prototype all credible
solutions to a given communications problem. Computer simulation of communications
systems falls into the middle ground between idealised modelling using simple formulae
and hardware prototyping. It occupies an intermediate location along all the following
axes:

crude — accurate
simple — complex
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cheap — expensive
quick — time consuming

In addition computer simulations are often able to account for system non-linearities
which are notoriously difficult to model analytically.

Computer simulations of communications systems usually work as follows. The
system is broken down into functional blocks each of which can be modelled
mathematically by an equation, a rule, an input/output lookup table or in some other way.
These subsystems are connected together such that the outputs of some blocks form the
input of others and vice versa. An information source is then modelled as a random or
pseudo random sequence of bits (see section 13.4). The signal is sampled and the
samples fed into the input of the first subsystem. This subsystem then operates on these
samples according to its system model and provides modified samples at its output.
These samples then become the inputs for the next subsystem, and so on, typically until
the samples represent the received, demodulated, information bit stream. Random
samples representing noise and/or interference are usually added at various points in the
system. Finally the received information bits are compared with the original information
source bits to estimate the BER of the entire communications system. Intermediate
results, such as the spectrum of the transmitted signal and the pdf of signal plus noise in
the receiver, can also be obtained.

The functional definition of some subsystems, e.g. modulators, is easier in the time
domain whilst the definition of others (e.g. filters) is easier in the frequency domain.
Conversion between time and frequency domains is an operation which may be
performed many times when simulations are run. Convolution, multiplication and
discrete Fourier transforms are therefore important operations in communications
simulation.

The accuracy of a well designed simulation, in the sense of how closely it matches a
hardware prototype, depends essentially of the level of detail at which function blocks are
defined. The more detailed the model the more accurate might be expected its results.
The penalty paid, of course, is in the effort required to develop the model and the
computer power needed to simulate the results in a reasonable time. Only an overview of
the central issues involved in simulation is presented here. A detailed and comprehensive
exposition of communication system simulation is given in [Jeruchim et al.]. In essence,
however, the normal simulation process can be summarised as:

1. Derivation of adequate models for all input signals (including noise) and subsystems.

2. Conversion, where possible, of signals and subsystem models to their equivalent

baseband form,

Sampling of all input signals at an adequately high rate.

4. Running of simulations, converting between time and frequency domains as
necessary. )

5. Use of Monte Carlo or quasi-analytic methods to estimate bit error rates.

Conversion of output signals back to passband form if necessary.

7. Display of intermediate signals, spectra, eye diagrams, etc. as required.

e

o
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Much of the work in the preceding chapters (especially Chapters 2 to 4) has been
directed at modelling the signals, noise and subsystems which commonly occur in digital
communications systems. This chapter therefore concentrates on steps 2 to 7 above.

13.2 Equivalent complex baseband representations

Consider a microwave LOS communications system operating with a carrier frequency of
6 GHz and a bandwidth of 100 MHz. To simulate this system it might superficially
appear that a sampling rate of 2 x 6,050 MHz would be necessary. This conclusion is, of
course, incorrect as should be apparent from the bandpass sampling theorem discussed in
Chapter 5. In fact, the most convenient way of representing this narrowband system for
simulation purposes is to work with equivalent baseband quantities.

13.2.1 Equivalent baseband signals

A (real) passband signal can be expressed in polar (i.e. amplitude and phase) form by:

x(t) = a(t) cos [2x f.t + ()]

= m{a(z) g2 it e”’(')} (13.1(a))
or, alternatively, in Cartesian (i.e. inphase and quadrature) form by:
x(t) = x;(t) cos 2z f .t ~ xg(t) sin 2z f .t (13.1(b))
The corresponding complex baseband (or lowpass) signal is defined as:
xp(t) = a(r) &0 (13.2(2))
or:
xpp(t) = x;(1) + j xg(t) (13.2(b))

(Multiplying equation (13.2(b)) by e/*"/* and taking the real part demonstrates the
correctness of the + sign here.) x,p(¢) is sometimes called the complex envelope of x(t).
The baseband nature of x;p(z) is now obvious and the modest sampling rate required to
satisfy Nyquist’s theorem is correspondingly obvious. Notice that thc transformation
from the real passband signal of equation (13.1(a)) to the complex baseband signal of
equation (13.2(a)) can be viewed as a two step process, i.e.:

L. x(#) is made cisoidal (or analytic) by adding j a(t)sin[27z f,.t + ¢(1)].

2. The carrier is suppressed by dividing by /2%,

Since a(r)sin[2x f.t + ¢(¢)] is derived from x(¢) by shifting all positive frequency
components by +90° and all negative frequency components —90°, step 1 corresponds to
adding j2(t) to x(t) where " denotes the (time domain) Hilbert transform (see section
4.5). The relationship between x(¢) and x;p(¢) can therefore be summarised as:
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Figure 13.1 Real passband signal x(t) and its complex envelope xp(1).
xp(t) = [x(0) + j £(1)] /270! (13.3)

x(#) and xp(¢) are shown schematically, for an APK signal, in Figure 13.1.
The spectrum, X;p(f), of x;p(t) can be found by applying the corresponding
frequency domain steps to the spectrum, X(f), of x(1), i.e..

1. X(f) has its negative frequency components suppressed and its positive frequency
components doubled. This is demonstrated using phasor diagrams, for a sinusoidal
signal, in Figure 13.2.

2. The (doubled) positive frequency components are shifted to the left by f, Hz.

Step 1 is more formally expressed as the addition to X(f) of jR(f)=
JI=isgn(f)X(f)] = sgn(f)X(f). Step 2 follows from the Fourier transform frequency
translation theorem. Figure 13.3 shows the relationship between X(f) and X;p(f).
Notice that the spectrum of the complex envelope does not have the Hermitian symmetry
characteristic of real signals. Steps 1 and 2 together can be summarised by:

Xep(f) = 2X(f + f) ulf + fo) (13.4)

The first factor on the RHS of equation (13.4) doubles the spectral components, the
second moves the entire spectrum to the left by f, Hz and the third factor suppresscs all
spectral components to the left of —f, Hz, Figure 13.4.
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(b) Cancellation of negative frequency phasors, reinforcement of positive frequency phasors

Figure 13.2 Phasor diagram demonstration of the equivalence between (a) the addition of an
imaginary quadrature version of a signal and (b) the suppression of the negative
frequency components plus a doubling of the positive frequency components.

13.2.2 Equivalent baseband systems

Equivalent baseband representations of passband systems can be found in the same way
as for signals. A filter with a passband (Hermitian) frequency response H(f) (Figure
13.5(a) to (c)), and (real) impulse response h(t), has an equivalent baseband frequency
response (Figure 13.5(d) to (f)):

Hip(f) = H(f + fo)u(f + 1) (13.5(a))
and baseband impulse response:
hip(t) = Vo [h(t) + j h()] e /27 (13.5(6)

Alternatively the complex baseband impulse response can be expressed in terms of its
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(b) Non-Hermitian spectrum of equivalent complex baseband signal

Figure 13.3 Spectra of real passband signal and its complex envelope.

inphase and quadrature components, i.e.:

hip(t) = YValhi(t) + j ho(1)] (13.6)
where the (real) passband response is:
h(t) = hy(t) cos 2z fot — ho(1) sin 27 f .t (13.7)

13.2.3 Equivalent baseband system output

The output of an equivalent lowpass linear system when excited by an equivalent lowpass
signal is found, in the time domain, using convolution in the usual way (but taking care to
convolve both real and imaginary components) and represents the equivalent lowpass
output of the system, y;p(?), i.e.:

hip(8) * xpp(t)
V2 lhi(®) + j ho(O] * [x;(8) + j xp(0)] (13.8)

Notice that when compared with the definition of equivalent baseband signals (equations
(13.4), (13.3) and (13.2(b))) the equivalent baseband system definitions (equations
(13.5(a)), (13.5(b)) and (13.6)) are smaller by a factor of 4. This is to avoid, for
example, the baseband equivalent frequency response of a lossless passband filter having
a voltage gain of 2.0 in its passband. (Many authors make no such distinction between
the definitions of baseband equivalent signals and systems in which case the factor of 14
usually appears in the definition of equivalent baseband convolution.) Recognising that
the equivalent baseband system output signal, y, (), can be expressed as inphase and

yip(t)
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Figure 13.4 Relationship between passband and equivalent low-pass spectra.
quadrature components of the passband output signal, y(¢), i.c.:
yp(t) = yi(t) + j yo() (13.9)
where:

y(t) = y;(t) cos 2z ft — yo(t) sin 27 f.t 1310 ;
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and equating real and imaginary parts in equations (13.8) and (13.9) gives:
yi(t) = Valhy(t) * x;(t) = ho(t) * xp(1)] (13.11(a))
yo) = Yalho(®) * x; () + hy(t) * xo(2)] (13.11(b))

These operations are illustrated schematically in Figure 13.6. Equations (13.10) and
(13.11) thus give the passband output of a system directly in terms of the inphase and
quadrature baseband components of its passband input and impulse response. y(¢) can
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(d) Equivalent baseband filter frequency response

Figure 13.5 Passband and equivalent lowpass frequency, amplitude and phase responses.



476 Communication systems simulation

|Hp (1)
-
0 f
(e) Bquivalent baseband filter amplitude response
oz (f)
n
e o
\\ f
\\
-
(f) Equivalent baseband filter phase response
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(c) Inphase and quadrature baseband component model

Figure 13.6 Convolution of inputs and impulse responses with equivalent baseband operations.

also be found from y () by reversing the steps used in going from equations (13.1(a)) to
(13.2(a)), ie.:

(1) = Ry sl
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= [m(t) eIty p(2) e"'z"ff"] (13.12(a))

Alternatively, if Y p(f) has been found from:
Yip(f) = Hpp(f) Xpp(Sf)

then Y(f) can be obtained using the equivalent frequency domain quantities and
operations of equation (13.12(a)) (see Figure 13.7), i.e.:

Y(f) = Hermitian{Y1p (f - )} (13.12(b))
Y (F-fI+ Y f ~ f)
2

(That any function, in this case Y;p(f — f.), can be split into Hermitian and anti-
Hermitian parts is easily demonstrated as follows:

XN+ X' XD - XD (13.13)

X(f) =

2 2

3

~Y

Figure 13.7 Obtaining the spectrum of real passband signal, (b) plus (e), from the spectrum of an
equivalent complex baseband signal, (a).
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The first term has even real part and odd imaginary part and is therefore Hermitian. The
second term has odd real part and even imaginary part and is therefore anti-Hermitian.)

13.2.4 Equivalent baseband noise
Equivalent baseband noise, nyp(t), can be modelled in exactly the same way as an
equivalent baseband signal, i.e.:

np(t) = r(t) e®

n(t) + j np(r) (13.14)

where the passband noise process is:

n(t)

r(t) eje(t) ej2;rf,.t

ny(t) cos 2z fot — np(t) sin 2z fi .t (13.15)

Figure 13.8 illustrates the relationship between the passband and equivalent baseband
processes in time and phase domains. For the special, but very important, case of a strict-
sense, zero mean, Gaussian, narrowband noise process the properties of the baseband
processes ny(t) and np(t) are summarised in Table 13.1.

Most of these properties are intuitively reasonable and are, therefore, not proved here.
(Proofs can be found in [Taub and Schilling].) One anti-intuitive aspect of the equal
variance property, however, is that each of the quadrature baseband processes alone
contains the same power (i.e. has the same variance) as the passband noise process. (To
the authors, at least, intuition would suggest that each of the baseband process would
contain half the power of the passband process.) This problem is easily rcsolved,
however, by considering the power represented by equation (13.15), i.e.:

(n¥(t)) = ([n(r) cos 2z fot — ny(t) sin 27 f,1)%)
Ya(nj (1)) + Ya(np (1)) (13.16(a))

1t

And since (n3(t)) = (né(t)) (acceptable on intuitive grounds) then:

(rA@)) = (nj(®) = (np®) (13.16(b))

Table 13.1 Properties of equivalent baseband Gaussian noise quadrature processes.

Property Definition

Zero mean (i (1)) = (np(1)) =0

Equal variance (n}(0)) = (np () = (n*(0)y = 0’
Zero correlation (ny(t) np(t)) =0

Gaussian quad. components | p(n;) = p(ng) = [/(N27 )] e 27
Rayleigh amplitude p(r) = (rlo?) e, 120
Uniform phase p(6) =1/2x), 8l<nm
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(b) Imaginary equivalent baseband component
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(f) Passband noise, = (¢)

(g) Phasor for passband noisc
process, 1 ()

Figure 13.8 Schematic illustration of passband and equivalent baseband noise processes with
corresponding phasor trajectories.

Figure 13.9 shows, in a systems context, how the passband process n(t) could be
generated from the baseband processes n, () and np(t). Notice that the power in each
quadrature leg is halved after multiplication with the carrier.

Since noise processes do not have a well defined voltage spectrum (preventing
equation (13.4) from being used to find an equivalent baseband spectrum) the (power)
spectral (density) description of n;(z) and ng(r) is found by translating the positive
frequency components of G,(f) down by f, Hz, translating the negative frequencies up
by f. Hz, and adding, i.e.:

G (f) = Gy (f)
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Figure 13.9 Relationship between baseband quadrature noise components and the passband
Gaussian noise process.

= Gu(f + [ ulf + )+ Gu(f = fu=f + fO) (13.16(c))

The relationship between the PSD of n() and that of n;(¢) and ny(¢) is illustrated in
Figure 13.10.

13.3 Sampling and quantisation
Sampling and quantisation, as they affect communications systems generally, have been

discussed in Chapter 5. Here these topics are re-examined in the particular context of
simulation.
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Figure 13.10 Relationship between PSD of each equivalent baseband quadrature component of
n(t) and PSD of n(t).
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13.3.1 Sampling equivalent baseband signals

Nyquist’s sampling theorem, if correctly interpreted, can be applied to any process,
including an equivalent, complex, baseband process. In this case the baseband signal has
a conventionally defined bandwidth which is only half the bandwidth, B, of the real
passband signal, Figure 13.11. Thus a straightforward application of Nyquist’s theorem
gives a minimum sampling rate:

B
fez25 = B He (13.17)

Superficially equation (13.17) looks wrong in that it suggests all the information present
in a passband signal with bandwidth B Hz is preserved in only half the number of
samples expected. This paradox is resolved by remembering that for a complex baseband
signal there will be two real sample values for each sampling instant (i.e. an inphase, or
real sample, and a quadrature, or imaginary, sample). The total number of real numbers
characterising a given passband signal is therefore the same, whether or not an equivalent
baseband representation is used.

Sampling at a rate of f, Hz defines a simulation bandwidth of f,/2 Hz in the sense
that any spectral components which lie within this band will be properly simulated whilst
spectral components outside this band will be aliased. The selection of f; is therefore a
compromise between the requirement to keep f, low enough so that simulation can be
carried out in a reasonable time with modest computer resources, and the requirement to
keep f, high enough for aliasing errors to be acceptably low. The aliasing errors are
quantified in section 5.3.4 by a signal to distortion ratio (SDR) defined as the ratio of
unaliased signal power to aliased signal power, Figure 13.12. SDR is clearly a function
of the number of samples per symbol (i.e. f,/R,). Table 13.2 shows several
corresponding pairs of SDR and f/R; for the (worst) case of an unfiltered (i.e.
rectangular pulse) symbol stream.

fs/R; is typically selected such that SDR is 10 dB greater than the best SNR to be
simulated. For signals with significant pulse shaping the SDR for a given value of f/R;
is higher than that shown in Table 13.2. Eight samples per symbol, therefore, may often
represent sufficiently rapid sampling for the simulation of realistic systems.

XN Xip ()

/\ [\ S -
u T T y t T - —_—

B B 0 B B
‘Jf-—E ~J —fc+‘2— ﬁ‘; A 12"'5 -

(SRR~
=)

(SRR
~

@ (b)

Figure 13.11 (a) Passband and (b) equivalent baseband frequency spectra.
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Figure 13.12 Sampling of random binary waveform (source: Jeruchim et al., 1984, reproduced
with permission of the IEEE).

Table 13.2 Worst case SDR for various numbers of samples per symbol. (After Jeruchim et.al)

f./R, (samples/symbol) | SDR  (dB)
4 15.8
8 18.7
10 19.8
16 219
20 229

13.3.2 Quantisation

Simulation quantisation errors can be equated with the limited precision with which a
computer can represent numbers. The rounding errors due to this limited precision
effectively add noise to the waveform being simulated. In digital communications the
system’s ADC itself introduces quantisation error (sections 5.5 and 5.6) quantified by a
signal to quantisation noise ratio (SNgR) and given approximately (for linearly quantised
voice signals) by 6(n— 1) dB where n is the number of bits (typically 8) representing
each level, equation (5.23). The simulation induced SNyR will depend in a similar way
on the binary word size which the computer uses to represent numbers. This word size
would normally be at least 16 bits, typically 32-bits. Whilst this suggests that simulation
induced quantisation error will be negligible with respect to system induced quantisation
error it may sometimes be the case that simulation quantisation errors accumulate in
calculations. For long simulations (perhaps millions of symbols) accumulated errors may
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become significant. Using double precision arithmetic, where possible, will obviously
help in this respect.

13.4 Modelling of signals, noise and systems

One of the strengths of simulation is that it can often be interfaced to real signals and real
systems hardware. A real voice signal, for example, might be rapidly sampled and those
samples used as the information source in a simulation. Such a simulation might also
include measured frequency responses of actual filters and measured input/output
characteristics of non-linear amplifiers which are to be incorporated in the final system
hardware. (In this respect the distinction between hardware prototyping and software
simulation can become blurred.) Nevertheless, it is still a common requirement to model
signals, noise and systems using simple (and rather idealised) assumptions. A variety of
such models are discussed below.

13.4.1 Random numbers

Statistically independent, random, numbers with a uniform pdf are easily generated by
computers. Many algorithms have been proposed, but one [Park and Miller] which
appears to have gained wide acceptance for use on machines using 32-bit integer
arithmetic is:

x(k) = P xtk-1) 2% - 1) (13.18)

x(k) represents a sequence of integer numbers drawn from a uniform pdf with minimum
and maximum values of 1 and 2*! — I respectively. To generate a sequence of numbers,
x,(k), with uniform pdf between 0 and 1, equation (13.18) is simply divided by 2°' — 1.
(x,(k) never takes on a value of exactly zero since the algorithm would then produce zero
values indefinitely.) The initial value of the sequence x(0) # 0 is called the generator
seed and is chosen by the user. Strictly speaking only the choice of seed is random since
thereafter the sequence is deterministic, repeating periodically. The sequences arising
from well designed algorithms such as equation (13.18), however, have many properties
in common with truly random sequences and, from an engineering point of view, need
not usually be distinguished from them. They are therefore referred to as pseudo-random
(or pseudo-noise) sequences. A sequence y(k) with a pdf py(y) can be derived from the
sequence x,(k) using the target cumulative distribution of ¥, Figure 13.13. The CD of Y
(i.e. P(Y £y))is first found (by integrating py(y) if necessary). The values of x,(k) are
then mapped to y(k) according to this curve as shown in Figure 13.13. For simple pdfs
this transformation can sometimes be accomplished analytically resulting in a simple
formula relating y(k) and x,(k). Otherwise P(Y < y) can be defined by tabulated values
and the individual numbers transformed by interpolation.

The method described above is general and could be used to generate numbers with a
Gaussian pdf. It is often easier, for this special case, however, to takc advantage of the
central limit theorem and add several independent, uniformly distributed, random
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P(Y<y

Figure 13.13 Cumulative distribution used to transform a uniformly distributed random variable
to a random variable Y with pdf py(¥).

sequences, 1.6.:

il N
yk) = 2 x, (kY- > (13.19)
i=1

Using equation (3.16) we see that X, is 0.5, and subtracting N/2 in equation (13.19)
ensures that ¥ = 0. Furthermore the variance of X, is 1/12. Choosing N = 12 therefore
ensures that 0'3 = 1.0 without the need for any additional scaling. (Higher values of N
would, of course, improve the accuracy of the resulting Gaussian pdf.)

Correlated random numbers are easily generated from statistically independent
random numbers by forming linear combinations of sequence pairs. For example, a
random sequence, y(k), with autocorrelation properties, R, (x), (as defined in section
3.3.3) specified by: '

R,(0) = oy (13.20(2))
R, = « o}, a<l (13.20(b))
R,*2) = Boy, B<I (13.20(c))
R,(xx) = 0, K>2 (13.20(d))

yky = 0 (13.20(e))

can be formed from a zero mean, unit variance, statistically independent sequence, s(k),
using the linear transform:

y(k) = wys(k)+ wys(k — 1)+ wys(k — 2) (13.21)
Substituting equation (13.21) into equation (13.20(a)) gives:
op = Y2k - oY (13.22a)

= [wys(k) + wys(k = 1) + was(k — D2 -0

Since s(k) is a sequence of uncorrelated numbers only terms, in the expansion of
equation (13.22(a)), having factors with equal arguments of s give non-zero results.

Therefore:
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op = wis2(k) + wis2(k - 1) + wls2(k — 2) (13.22(b))
And since the variance of s(k) is 1.0 then:
o7 = wi+wl+wl (13.22(c))
Similarly:
o 0'; = [wis(k) + wys(k — 1) + wys(k —2)] [w stk = 1) + wos(k —2) + w3 s(k — 3)]
= wow 2k — 1) + wawys2(k — 2) (13.23(a))
all other terms being zero. Thus:
a o} = wawi + wiw, (13.23(b))
and:
B op =Twstk) + wosk=1) + wis(k —2)] [wys(k —2) + wys(k —3) + wys(k —4)]
= wyw;s2(k ~2) (13.24(a))
ie.
B oy = waw (13.24(b))

Equations (13.22) to (13.24) generalise for a series with non-zero correlation over an N
term window to:

N—x
Ry(x) = Z‘T WiW s (13.25)
i=
Equation (13.20(e)) is automatically satisfied since s(k) = 0. Equation (13.25) provides
N independent equations which are solved simultaneously to give the appropriate
weighing factors, wy, wy, -+, wy.
The general problem of simultaneously obtaining a specified pdf and specified PSD is
a difficult one. This is because the linear system represented by equation (13.21)
generally changes the pdf in an unpredictable way. The exception to this, of course, is for
random sequences with Gaussian pdf which can be filtered to realise a specified PSD
without altering its Gaussian characteristic (see section 4.6.3).

13.4.2 Random digital symbol streams

Random digital symbol streams can be easily generated from a set of random numbers as
follows. Consider a sequence of independent random numbers, y(k), with the pdf py(y)
shown in Figure 13.14. If three symbols represented by three voltage levels v =0, 1,2 V
are required with probabilities of 0.5, 0.25, 0.25 respectively then py(y) is divided into
three areas corresponding to those probabilities. This defines thresholds y, and ¥
(Figure 13.14). Each random variable sample can then be mapped to a random symbol
using the rule:
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Figure 13.14 pdf for a random variable used to generate a random digital symbol stream.

Shift register

] —> Qutput

L

Modulo 2
addition

Figure 13.15 Use of a shift register to generate pseudo-random bit sequences.

0, y(k) <y,
vk) = {1, v < y(k) <y, (13.26)
2, y(k) > yz

As an alternative to using a random number algorithm (such as equation (13.18))
followed by equation (13.26), pseudo-random digital symbol streams can be generated
using shift registers with appropriate feedback connections. An example generator for a
binary sequence is shown in Figure 13.15. Such generators are simple and easily
implemented in hardware as well as software. (This makes them useful as signal sources
for field measurements of BER when no secure, i.e. errorless, reference channel is
available.) The properties of the pseudo-random bit sequences (PRBSs) generated in this
way can be summarised as follows:

1.
2.

The sequence is periodic.

In each period the number of binary ones is one more than the number of binary
ZEeros.

Among runs of consecutive ones and zeros one half of the runs of each kind are of
length one, one quarter are of length two, one eighth are of length three, etc. as long
as these fractions give meaningful numbers.

If a PRBS is compared, term by term, with any cyclical shift of itself the number of
agreements differs from the number of disagreements by one.

The autocorrelation function of a K-bit, periodic, PRBS, z(k), is defined by:
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(13.27)

R(7) = % Z wkyztk = 1)
k=1
and is shown in Figure 13.16(b) for a polar sequence with amplitude 1, Figure 13.16(a)

Its voltage and power spectra are shown in Figure 13.16(c) and (d)
The general algorithm implemented by an n-element shift register with modulo 2

feedback, Figure 13.17, can be expressed mathematically as
(13.28)

vik)=w, vk—1)® w, ov(k-2)D--- @ wyv(k —n)
w; denotes the feedback weighting (1 or 0)

where @ denotes modulo 2 addition
associated with the register’s (i+ 1)th element and corresponds in hardware to the
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(d) Power spectrum of PRBS

(c) Voltage spectrum of PRBS
Figure 13.16 Temporal and spectral properties of a rectangular pulsed polar, NRZ, PRBS.
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3t v(k-1) | v(k-2) | v(k-3) | v(k-4) v(k—n)

Figure 13.17 General implementation of PRBS generator using an n-element shift register.

presence or absence of a connection.

Table 13.3 PRBS sequence feedback connections.

Number of shift Non-zero feedback Sequence length
register elements, n | taps in addition to wy K=2"-1
4 ws 15
5 W 31
6 Wws 63
7 We 127
8 W, Ws, Wy 255
9 ws 511
10 W 1023
12 Wi, Wg, W 4095
14 Wi, Wg, Wy 16383
16 Wis, W3, Wy 65535

The all-zeros state is prohibited in the PRBS, as generated above, since this would
result in an endless stream of zeros thereafter. A maximal length PRBS is one in which
all possible n-bit patterns (except the all-zeros pattern) occur once and once only in each
period. The length of such a sequence is therefore K = 2" — 1 bits. Not all arrangements
of feedback connection give maximal length sequences. To establish whether a given set
of connections will yield a maximal ength sequence the polynomial:

f(x) = wg+wyx+ Wwoxl 4w x4 X" (13.29)

is formed and then checked to see if it is irreducible. (Note that wo = 1, otherwise the
final element of the register is redundant.) An irreducible polynomial of degree n is one
which cannot be factored as a product of polynomials with degree lower than n. A test
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for irreducibility is that such a polynomial will not divide exactly (i.e. leaving zero
remainder) into x* + 1 forall P < 2" + 1.

Table 13.3 [adapted from Jeruchim et al.] gives a selection of shift register feedback
connections which yield maximal length PRBSs.

13.4.3 Noise and interference

Noise is modelled, essentially, in the same way as the signals described in section 13.4.2.
The following interesting point arises, however, in the modelling of white Gaussian noise.
Because a simulation deals only with noise samples then, providing these noise samples
are uncorrelated (and being Gaussian, statistically independent) no distinction can be
made between any underlying (continuous) noise processes which satisfy:

R,(KT,) = 0 (13.30)

where T, = 1/f; is the simulation sampling period. The simulation is identical, then,
whether the underlying noise process is strictly white with an impulsive autocorrelation
function, or band limited to f,/2 Hz with the sinc shaped autocorrelation function shown
in Figure 13.18. Provided f,/2 (sometimes called the simulation bandwidth) is large with
respect to the bandwidth of the system being simulated then the results of the simulation
will be unaffected by this ambiguity. White Gaussian noise is therefore, effectively,
simulated by generating independent random samples from a Gaussian pdf with variance
(i.e. normalised power), o7, given by:

o2 = Nofs _ No
nT T T o,

where Ny (VEHz ) is the required one-sided NPSD.

Impulsive noise is characterised by a transient waveform which may occur with
random amplitude at random times, or with fixed amplitude periodically, or with some
combination of the two, Figure 13.19. The noise may be generated at baseband or
passband. In radio systems, however, the noise will be filtered by the receiver’s front end

%) (13.31)

Ry (D)
(1)

N\ o
- ” Nt

-3 Ts -2 T.t TJ T: ZTJ 3 Ts

Figure 13.18 ACF of bandlimited white noise with bandwidth B = f,/2 Hz.
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1() \

Figure 13.19 Impulsive noise with random interpulse spacing and random pulse amplitude.

and IF strip after which even baseband generated impulses will have bandpass
characteristics, often resembling the receiver’s impulse response. (Impulsive noise does
not imply a sequence of impulses in the Dirac delta sense but usually does imply transient
pulses with an effective duration which is short compared to the average interpulse
spacing.) A useful way of modelling impulsive noise is to separate the statistical aspects
from the deterministic pulse shape. This can be done by using a (complex) random
number generator to model the amplitude and phase of the pulses, a Poisson counting
process to model the arrival times, T}, of the pulses and a deterministic function, /(t), to
model the pulse shape (for example e™ cos w.f u(t)). Such a model would be specified
at passband by:
N =T,
) = D Are 7 cos(w.t+6;)u(t—T,) (13.32)
i=1
The equivalent baseband representation would be:
y N
Ip(t) = D, A% et ut-T) (13.33)
i=1
Rewriting equation (13.33) as a convolution and expanding the exponential, i.e.:
t N
Ip(t) = € 7 u(t)* D A, (cos6; + jsin8;) 8(t — T,) (13.34)
i=1

emphasises the separation of pulse shape from pulse statistics. 8; would normally be
assumed to have a uniform pdf and a typical pdf for A; might be log-normal. If the
impulse noise is a Poisson process then the pdf of inter-arrival time between pulses is:

par, (AT;) = 4 e *4Ti (13.35)

where AT; =T, —T,_| and A1is the average pulse arrival rate (see Chapter [7).

Interference usually implies either an unwanted periodic waveform or an unwanted
(information bearing) signal. In the former case pulse trains and sinusoids, for example,
are easily generated in both passband and equivalent baseband form. In the latter case the
interfering signal(s) can be generated in the same manner as wanted signals.
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13.4.4 Time invariant linear systems

Linear subsystems, such as pulse shaping filters in a transmitter and matched filters in a
receiver, are usually specified by their frequency response (both amplitude and phase).
There is a choice to be made in terms of the appropriate level of idealisation when
specifying such subsystems. An IF filter in a receiver may, for example, be represented
by a rectangular frequency response at one extreme or a set of tabulated amplitude and
phase values, obtained, across the frequency band, from measurements on a hardware
prototype, at the other extreme. (In this case, unless the frequency domain points have the
same frequency resolution as the simulation Fourier transform algorithm, interpolation
and/or resampling with the correct resolution will be required.) In between these extreme
cases analytical or tabulated models of classical filter responses (e.g. Butterworth,
Chebyshev, Bessel, elliptic) may be used. Digital filter structures, typically implemented
using tapped delay lines [Mulgrew and Grant], are especially easy to simulate, at least in
principle. The effect of a frequency response on an input signal can be found by
convolving the impulse response of the filter (which will be complex if equivalent
baseband representations are being used) with its input. (The impulse response is
obtained from the frequency response by applying an inverse FFT, see section 13.5)
Alternatively, block filtering can be applied in which the input time series is divided into
many equal length segments, Fourier transformed using an FFT algorithm, multiplied by
the (discrete) frequency response and then inverse transformed back to a time series. The
implementation of block filtering, including important aspects such as appropriate zero
padding, is described in [Strum and Kirk].

13.4.5 Non-linear and time varying systems

Amplitude compression, as used in companding (section 5.7.3), is a good example of
baseband, memoryless, non-linear, signal processing. This type of non-linearity can be
modelled either analytically (using, for example, equation (5.31)) or as a set of tabulated
points relating instantaneous values of input and output. (Interpolation may be necessary
in the latter case.)

je(r)

jeto) £ 1900 yir(t) = gla)e

X L

xp(0) = a(e Xp(1)

{2 (0}

Phase extraction

|7r (9| <0 8(@)

Amplitude extraction AM/AM characteristic

Figure 13.20 Equivalent baseband model for a non-linear, memoryless, bandpass, system.
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For memoryless, non-linear, systems operating on narrow-band signals the useful
equivalent baseband model shown in Figure 13.20 [developed from Tranter and Kosbar]
can be used. This model works because, for a sinusoidal input, memoryless non-
linearities produce outputs only at the frequency of the input and its harmonics. The
harmonics can be filtered out at the non-linearity’s output. The overall effect is of a
‘linear’ system with amplitude dependent gain (AM/AM conversion).

If a non-linearity has memory of intermediate length (i.e. memory which is significant
with respect to, and may be many times, the carrier period but which is nevertheless short
compared to changes in the carrier’s complex envelope) then this too can be simulated as
an equivalent baseband system, Figure 13.21. The amplitude of the signal (being related
to the envelope) is changed in an essentially memoryless way. The phase of the signal,
however, may now be affected by the non-linearity in a way which depends on the signal
amplitude (AM/PM conversion). The power amplifier in satellite transponders can often
be modelled in this way.

There are other types of non-linear bandpass system which fall into neither of the
above special categories. In general it is not possible to obtain equivalent baseband
models for these processes. Simulation of these non-linearities must normally, therefore,
be executed at passband.

Adaptive equalisers (usually implemented as tapped delay lines with variable tap
weights) and adaptive delta modulation (section 5.8.5) are examples of time varying,
linear, subsystems. The simulation aspects of such subsystems are essentially straight-
forward, the design of algorithms to produce the required adaptive behaviour being the
principal challenge. It is worth observing, however, that an equaliser operating on the
demodulated I and Q components of a quadrature modulated signal generally comprises
four separate tapped delay lines. Two lines operate in I and Q channels, individually
controlling I and Q channel ISI, whilst two operate across I and Q channels controlling
crosstalk, as in Figure 13.6(c). These four, real, tapped lines can be replaced by two
lines, in which the weighting factors applied to each tap are complex, and which operate

je(n e/t £ 11000+ 8(@)) Vir(t) = g(a) 100 + 8@}

X.p(f) = a(f)e X1p(8) wvm|
1Zp (9] X Lxg
efe(ﬂ)

Phase extraction

0

9(a) | AM/PM characteristic

a(t) I

IfLP(f), g(a)

Amplitude extraction AM/AM characteristic

Figure 13.21 Equivalen: baseband model for a non-linear, bandpass system, with memory of
intermediate length.
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on the complex envelope of the I and Q channel signals.

13.5 Transformation between time and frequency domains

Both time domain and spectral quantities are of interest in the design and evaluation of
communication systems. This alone would be sufficient reason to require transformation
between domains when simulating systems. In fact transformation between domains is
also desirable since some simulation operations can be implemented more efficiently in
the frequency domain than in the time domain.

Computer simulations work with discrete samples of time waveforms (i.e. time series)
and discrete samples of frequency spectra. The discrete Fourier transform (DFT) and its
relative, the discrete Fourier series (DFS), are the sampled signal equivalent of the
Fourier transform and Fourier series described in Chapter 2. From a mathematical point
of view the DFT, DFS and their inverses can simply be defined as a set of consistent
formulas without any reference to their continuous function counterparts. Almost always,
however, in communications engineering the discrete time series and frequency spectra
on which these transforms operate represent sampled values of underlying continuous
functions. Their intimate and precise connection with continuous Fourier operations is
therefore emphasised here.

13.5.1 Discrete Fourier transform
Consider the N-sample time domain signal (or time series), v,(t), shown in Figure

13.22(a). The sample values can be represented by a series of weighted impulses, Figure
13.22(b), and expressed mathematically by:

v @OV
motom VN-t
K TITIITrilrr >~
> arl< !
@
v5(t)Vs_‘
v ow VAL
w +HHMY*A4 .
—ladw ’
(b)

Figure 13.22 (a) Sampled continuous signal or time series, and (b) its representation as a sum of
impulses or delta functions.
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vs(t) = vp 8+ v, 8(t = At) +vy 8t —2A8) + - (V/s) (13.36)

Notice that vz(f) has units of V/s. This is easily demonstrated by using the sampling
property of impulse functions under integration to recover the original time series which

has units of V, i.e.:

V(1) = { j vod(0) dt, jv,a(t—Ax) dr, _[ V,8(t = 2A1) dz,-.}

—oo —o0 —oo

{vo J 5() dt, v, j 5(t — Aty dt, v, J S5(t - 2A1) dt, }

= {vo, vi, v, a1} (V) (13.37)
(Since the sample values, v;, have units of V this means that the impulses, §(¢ — At), have
units of s, i.e. their area, or strength, is dimensionless.) The voltage spectrum of vs(¢)

is given by:

vs(®)}

Vs(f)

FT {
Vo j s dr + v, J&(I—At)e’jz”ﬂ dt+--- (V) (13.38)

(Notice that because equation (13.38) is the transform of a sequence of weighted
impulses with units of V/s the voltage spectrum has units of V only, not V/Hz as usual.)
Using the sampling property of §(¢) under integration equation (13.38) becomes:

V&(f) = Voe-jO+ vle—jZ”fA’+V2€—j2”f2At+“' (V) (1339)

Vs(f) in equation (13.39) is a continuous function, i.e. it is defined for all values of f.
Using the summation notation equation (13.39) can be written more succinctly as:

N-1
Vs(f) = D, v, e 2710 (v (13.40)
=0
The values of the spectrum, V;(f), at the discrete frequencies fy, fi, f>, etc. are given by:
N-1 o :
Valfy) = 2 v, e 2R (v) (1341)
=0 )
and if the frequencies of interest are equally spaced by A f Hz then:
N-1
Vo(fy) = 2o ve €777 (y) (13.4)
=0

where v=0, 1, 2, 3, ... etc. Since the time series contains N samples it represents a signal |
with duration, 7', given by:

T = NAt (s) (13.43) |
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Nyquist’s sampling theorem (Chapter 5) asserts that the lowest observable frequency
(excluding DC) in the time series is:
= Af (Hz) (13.44)

= Nar

Thus:
1
Af At = — 13.45
f ~ (13.45)

and equation (13.42) can be written as:

N-1 ) v
Vs(f) = D v €778 (v) (13.46)
=0

Equation (13.46) is the definition, adopted here, for the forward DFT. Comparing this
with the conventional (i.e. continuous) FT:
V(f) = jv(t) I F gt (V/Hz) (13.47)

—o0

the difference is seen, essentially, to be the absence of a factor corresponding to dr.
Vs(f,) is therefore related to V(f) by:

V(N =y, = Vs(fy) At (V/Hz) (13.48)

The reason why an approximation sign is used in equation (13.48) will become clear
later. A note of caution is appropriate at this point. Equation (13.46) as a definition for
the DFT is not universal. Sometimes a factor of 1/N and sometimes a factor of 1/YN is
included in the formula. If the absolute magnitude of a voltage spectrum is important it is
essential, therefore, to know the definition being used. Furthermore proprietary DFT
software may not include an implementation of equation (13.48). Care is therefore
needed in correctly interpreting the results given by DFT software.

13.5.2 Discrete Fourier series

If v(¢) is periodic then its FT should represent a discrete voltage spectrum (in contrast to
discrete values taken from a continuous spectrum). Comparing the DFT (equation
(13.46) with the formula for a set of Fourier series coefficients (Chapter 2):
1 T
¢ =z J’ W) eI dr (V) (13.49)
0
and remembering that the length of the time series is given by T = NAt then, to make
Vs(f,) reflect C, properly, an extra factor 1/N is required, i.e.:

~ 1 1
Co = Vsl AL = Z Vi(£)) (V) (13.50)
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The (forward) discrete Fourier series (DES) is therefore defined by:

N-1 o
C(f,) = % Z_%v, TN (V) (13.51)

The need for the factor 1/N in equation (13.51) is seen most easily for the DC (v = 0)
value which is simply the time series average.

13.5.3 DFS spectrum and rearrangement of spectral lines

Providing all the samples in the time series, v,, are real then the spectrum defined by
equation (13.51) has the following properties:
1. Spectral lines occurring at v =0 and v = N/2 are real. All others are potentially

complex.
2. C(fv-)=C (f,), i.e. the DFS amplitude spectrum is even and the DFS phase
spectrum is odd.

Figure 13.23 illustrates these properties for a 16-sample time series. The harmonic
number, v, along the x-axis of Figure 13.23 is converted to conventional frequency f (in

Hz) using:

fr=vh = FVAT (Hz) (13.52)
This leads, superficially, to a paradox in that fy_; appears to correspond to a frequency of
(almost) 1/Ar Hz yet Nyquist’s sampling theorem asserts that frequencies no higher than
1/(2At) Hz can be observed. The paradox is resolved by recognising that no additional
information is contained in the harmonics N/2 < v < N since these are conjugates of the
harmonics O0<v < N/2. A satisfying interpretation of the ‘redundant’ harmonics
(v > N/2) is as the negative frequency components of a double sided spectrum. The
conventional frequency spectrum is therefore constructed from the DFS (or DFT) by
shifting all the lines from the top half of the DFS spectrum down in frequency by NAf
Hz as shown in Figure 13.24. (Half the component at v = N/2 can also be shifted by

V)
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DC positive frequencies N negative frequencies N
fy=VvAf 2 f=(v=-N)Af VN)=V(O)
(Not present)

Figure 13.23 Schematic illustration of discrete Fourier series for a 16-sample time series.
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—NAf Hz to retain overall symmetry, if desired.) The highest observable frequency is
then given by:
fvn = (Hz) (13.53)

as expected.

2 At

13.5.4 Conservation of information

In the time domain an N-sample real time series is represented by N real numbers. In the
frequency domain the same signal is represented by N —2 complex numbers and 2 real
numbers (i.e. 2(N —2) +2 real numbers). Half of the complex numbers, however, are
complex conjugates of the other half. Thus in the frequency domain, as in the time
domain, the signal is represented by N independent real numbers.

13.5.5 Phasor interpretation of DFS

Consider equation (13.51). Each (complex) spectral line, C(f;) for example, is a sum of
N phasors (one arising from each time sample), all with identical frequency, f3 in this
case, but each with a different phase, 8, = -22(3/N)r. Figure 13.25(a) and (b) illustrate
the phasor diagrams for C(f;) and C(f,) respectively corresponding to an 8-sample time
series. In Figure 13.25(a) (where v = 1) the phasors advance by 27(1/8) rad = 45° each
time 7 is incremented. In Figure 13.25(b) (where v = 2) the phasors advance by 27(2/8)
rad = 90°. (There is an additional 7 rad phase change when the corresponding time series
sample is negative.)

13.5.6 Inverse DFS and DFT

Consider the forward DFS:

N-1 oy
C(f,) = % 2—‘6 v, e TR (V) (13.54)

After rearranging, this represents N cisoids (or phasors) each rotating with a different

V?v)’\ vy

1 | -
0 N N-1 \Y 0 v
2
(a) Envelope of DFS output (b) Conventional interpretation

Figure 13.24 Interpretation of DFS (or DFT) components v > N/2 as negative frequencies.
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Figure 13.25 Phasor interpretation for DFS showing composition of: (a) fundamental (v =1) and
(b) second harmonic (v = 2) components of an 8-sample time series.

frequency, i.e.:
Yo C(fonr) -+ » C(f2)s C(far), Cfo)s €A, C(fa)s- -0 Y2 ClSfwp)

Each time sample, v,, is the sum of these cisoids evaluated at time # = 7Ar. Figure 13.26,
for example, shows the phasor diagram for N = 8 at the instant ¢ = 3Az (i.e. 7 =3). The
resultant on this diagram corresponds to the third sample of the time series. (The diagram
is referred to as a phasor diagram, here, even though different phasor pairs are rotating at
different frequencies.) By inspection of Figure 13.26 the inverse DFS can be seen to be:

N-1 2z
v, = 2 CHNE N (V) (13.55)
yv=0

Similarly the inverse DFT is:

C({"«)ejfﬂ
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Figure 13.26 ‘Phasor’ diagram at the instant t = 3At (i.e. 7 =3) fora real, 8-sample, time series.




Transformation between time and frequency domains 499

1 N-l 2m
ve= = 2 Vs(f)e W
v=0

T

2 (13.56)

(Notice that the factors of 1/N are arranged in the DFS, DFT and their inverses, such that
applying a given discrete transform, followed immediately by its inverse, results in no
change.)

13.5.7 DFT accuracy

Having calculated a spectrum using a DFT, and rearranged the spectral lines as described
in section 13.5.3, the question might be asked — how well do the resulting values
represent the continuous Fourier transform of the continuous time function underlying the
time series? This question is now addressed.

Sampling and truncation errors

There are two problems which have the potential to degrade accuracy. These are:
1. sampling;
2. truncation.
Aliasing, due to sampling, is avoided providing sampling is at the Nyquist rate or
higher, i.e.:

1
=2 2fy () (13.57)

The truncation problem arises because it is only possible to work with time series of
finite length. A series with N samples corresponds to an infinite series multiplied by a
rectangular window, TI(t/T), of width T = NAt s, Figure 13.27. This is equivalent to
convolving the FT of v4(t) with the function Tsinc(Tf), Figure 13.28. The convolution
smears, or smooths, V(f) on a frequency scale of approximately 2/T Hz (i.e. the width of
the smoothing function’s main lobe). It might be argued that a time series for which the
underlying function is strictly time limited to NAz s does not suffer from truncation error.
In this case, however, the function cannot be bandlimited and the Nyquist sampling rate
would be o« Hz making it impossible to avoid aliasing errors. Conversely if the
underlying function is strictly bandlimited (allowing the possibility of zero aliasing error)

Rectangular window, I1{(+/T) T

\ — v

TS AT T TN el
= o N LI+

Figure 13.27 A finite (8-sample) time series interpreted as the product of an infinite series and a
rectangular window.

~
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then it cannot be time limited, making truncation errors unavoidable. (It is, of course,
possible to reduce both types of error by sampling at a faster rate and increasing the
length of the time series. This means increasing the overall number of samples, however,
requiring greater computer resources.)

Frequency sampling, smoothing, leakage and windowing

Discreteness and periodicity are the corresponding properties of a function expressed in
frequency and time domains. This is summarised in Table 13.4.

Table 13.4 Relationship between periodic and discrete signals.

Time domain | Frequency domain

Periodic Discrete
Discrete Periodic

Since the DFT gives discrete samples of V(f) (at least approximately) then the
function of which it is the precise FT (or FS) is periodic. Furthermore, since the time
series, v;(1), is discrete it should have a periodic spectrum. This implies that a replicated
version of a DFT, such as that shown in Figure 13.29(b), is the exact FT (or FS) of a
function such as that shown in Figure 13.29(a).

Figure 13.30 illustrates how the implicit periodicity of both the underlying time series
and the exact spectrum of this time series impacts on truncation errors. It can be seen that
in addition to smoothing of the baseband spectrum, energy leaks into the DFT from the
higher frequency spectral replicas via the window spectrum with which the exact
spectrum is convolved. This type of error is called leakage and can be reduced by
decreasing the sidelobes of the window function’s spectrum. Shaping of the time domain
window function to realise low sidelobes in its spectrum tends, however, to increase the
width of the spectral main lobe. There is, consequently, a trade-off to be made between
leakage and smoothing errors. The optimum shape for a time domain window depends
on the particular application, the data being transformed and engineering judgement. The
commonly encountered window functions are discussed in [Brigham].

The effect of crude windowing, with a rectangular shape for example, does not,
necessarily, lead to poor accuracy in the calculated spectrum of a time series. If the

T sinc (Tf) Vi

YT ;
2
T

Figure 13.28 Convolution in frequency domain of FT {v(1)} with FT {T1(¢/T)}, corresponding to
rectangular windowing in Figure 13.27.
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Figure 13.29 Sampled and replicated versions of a signal in (a) time and (b) frequency domain
forming a precise FT or FS pair.

spectrum of the unwindowed time series is slowly changing on the frequency scale of the
oscillations of the window’s sidelobes then cancellation tends to occur between the
leakage from adjacent sidelobes, Figure 13.31. A corollary of this is a frequency domain
manifestation of Gibb’s phenomenon, Figure 13.32. If the time series spectrum changes
rapidly on the frequency scale of window spectrum oscillations, then as the window
spectrum slides across the time series spectrum the convolution process results in window
spectrum oscillations being reproduced in the spectrum of the windowed time series.
This problem is at its worst in the region of time series spectral discontinuities where it
can lead to significant errors. The same effect occurs in the region of any impulses
present in the time series spectrum. In particular this means that the DC level (i.e.
average value) of a time series should be removed before a DFT is applied. If this is
overlooked it is possible that the window spectrum reproduced by convolution with the 0
Hz impulse may obscure, and be mistaken for, the spectrum of the time series data,
Figure 13.33. (If impulses in the spectrum of the time series are important they should be
identified, and removed, before application of a DFT, and subsequently reinserted into the
calculated spectrum.)

Trailing zeros
The frequency spacing of spectral values obtained from a DFT is given by:

Af = fi = % (Hz) (13.58)
where T = NAt is the (possibly windowed) length of the time series. Af is sometimes

called the resolution of the DFT. (This does not imply that all spectral features on a scale
of Af are necessarily resolved since resolution in this sense may be limited by
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Figure 13.30 Origin of smoothing and leakage errors ina DFT.

windowing effects.) Af can only be made smaller by increasing the length of the time
series data record, i.e. increasing T (or N). The alternative is to artificially extend the
data record with additional trailing zeros. This is illustrated in Figure 13.34 and is called
zero padding. Notice that the highest observable frequency, fup, determined by the
sampling period, At, is unaffected by zero padding but, since more samples are included
in the DFT operation, there are more samples in the output display, giving finer sampling
in the frequency domain. Since the genuine data record has not been extended, however,
the underlying resolution is unaltered, the zero padding samples having simply allowed
the DFT output to be more finely interpolated [Mulgrew and Grant].
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Figure 13.31 Approximate cancellation of leakage errors for a windowed signal with slowly
changing spectrum: (a) convolution of underlying spectrum with oscillating window

spectrum; (b) result of convolution at frequency shiftg = f.
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Figure 13.32 Frequency manifestation of Gibb’s phenomenon: (a) convolution of a spectrum
containing rapidly changing region with oscillating spectrum of a windowing
function; (b) resulting oscillations in spectrum of windowed function.

Random data and spectral estimates

Consider the stationary random process, v(?), illustrated in Figure 13.35(a). If several
segments of this random time series are windowed and transformed using a DFT then the
result is a number of voltage spectra, each with essentially meaningless phase
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Figure 13.33 (a) Convolution of a signal spectrum containing an impulse at 0 Hz with a sinc
function reflecting rectangular windowing of a signal with a large DC value, (b)
result of convolution excluding DC impulse, (c) convolution including DC impulse.
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Figure 13.34 lllustration of zero padding a time series with trailing zeros.

information. If power spectra, G;(f,), are obtained using:
1
Gi(f) = 7 | DFT [v, wi(2)]At | 2 (VPHz™) (13.59)

where w;(7) is the window applied to the ith segment of the data and G;(f,) is the power
spectrum of the ith segment, then the size of a spectral line at aigiven frequency will
fluctuate randomly from spectrum to spectrum, Figure 13.35(b). Pethaps surprisingly, the
random error in the calculated samples of the power spectral density does not decrease if
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Figure 13.35 (a) Stationary random process divided into T -second segments, (b) power spectra
calculated from each time series segment.

the length of time series segments is increased. This is because the frequency ‘resolution’
improves proportionately. An example makes this clear. If the length of a time series
segment is doubled the spacing of its spectral lines is decreased by a factor of 2. Twice
the number of spectral lines are generated by the DFT and thus the information per
spectral line remains constant. The random errors in such a spectrum can be decreased
by:

1. Averaging the corresponding values (lines) over the spectra found from independent

time segments, i.e. using:

1 M
G(f) = 37 24 Gilfy (VHZ (13.60)

i=1
2. Averaging adjacent values in a single spectra.

An alternative approach is to use the Wiener-Kintchine theorem and transform the
autocorrelation function (ACF) of the time series, i.e.:

G(f,) = DFT {ACF [v, w(z)]} At (V?Hz!) (13.61)

where the units of the discrete ACF are V2. The number of spectral lines generated by
equation (13.61) now depends on the maximum temporal displacement (or lag) used in
the ACF rather than the length of the time series used.

13.6 Discrete and cyclical convolution
For sampled data such as that used in computer simulations the (discrete) convolution

between two time series Xg, X1, X2, > Xy-1 = {X;} and Yo, Y1, Y2, "> Ym-1 = {y.} is
defined by:

I = 2 X Yaoe (VD) (13.62)
=0
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where 7 is the (integer) sample number of (both) time series (i.e. x, = x(7At)), At is the
sampling period and n =0,1,2,---, N + M — 2 is the shift in sample numbers between x;
and the time reversed version of y,. (If the discrete convolution is being used to evaluate
the convolution of a pair of underlying continuous signals, then equation (13.62) must be
multiplied by the sampling period, Az. The result will then have units of Vs as
expected.) The question may be asked, ‘does the precise timing of the sampling instants
affect the result of the numerical (or discrete) convolution defined in equation (13.62)?".
The slightly surprising answer is generally yes. Figure 13.36 shows a signal sampled at
10 Hz. Dots represent samples which start at the origin (defined by the start of the
continuous signal) and crosses represent samples which start half a sample period after
the origin. Since convolution involves integration it is usually the case that the set of
sampling points which best represent the area of the underlying function will give the
best result in the sense that application of equation (13.62) will give an answer closest to
the analytical convolution of the underlying functions. This implies that the crosses in
Figure 13.36 represent superior sampling instants which is also consistent with an
intuitive feeling that a sample should be at the centre of the function segment which it
represents.

The crosses in Figure 13.36 also have the advantage that none fall on a point of
discontinuity. If sampling at such points cannot be avoided then an improvement in terms
of area represented is obtained by assigning a value to that sample equal to the mean of
the function value on either side of the discontinuity. In Figure 13.36, therefore, the
sample (dot) for the point ¢ = 1.0 would be better placed at 0.5 V than 0 V. (This is
consistent with the fact that physical signals do not contain discontinuities and that
bandlimited signals, corresponding to truncated Fourier series, converge at points of
discontinuity, to the mean of the signal value on cither side of that discontinuity, see
section 2.2.3.)

In practice convolution is often implemented by taking the inverse DFT of the product
of the DFTs of the individual time series, i.e.:

{x,) *{y,) = DFT"' [DFr{x,} DFT{y,}} v2) (13.63)

For equation (13.63) to yield sensible results the sampling period and length of both time
series must be the same. (Zero padding can be used to equalise series lengths if
necessary.) Writing out equation (13.63) explicitly (using equations (13.56) and (13.46)),
and using primes and double primes to keep track of sample numbers in the different time

0 02 0.4 0.6 0.8 10 i

Figure 13.36 Sampled signal showing alternative sampling instants.
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series:

1 11 N-1 N N- X 2
2r) = (x}* () = Z{ X N Z "”"]e"ﬁ”

v=0 =0 =0
1 N-1 N-1 N-I [ 27
- Z Xy —jZ”N(T +7) EJWW
v=20 =07 =
N-1 N-1 N-1 o v e
= Z D xeye| XN (13.64)
=017"=0 v=
The square bracket on the last line of equation (13.64) is zero unless:
t—7 —7 = nN (for any integer n) (13.65)
in which case it is equal to N. Equation (13.64) can therefore be rewritten as:
N-1 N-
z(r) = 2 2 Xy Y (t =17 —17 —nN only)
N-1
= Xy Ye— 1 —nN (13.66)
=0

The implication of equation (13.66) is that the rth sample in the convolution result is the
same for any n, i.e.:

z(7)
N-1

Z Xe'Ye-7 +N

Il 1]
-

ME oM
= ksl
- =,
~ <
- -

| 1

-~ “

|

= ... (13.67)

This means that y,_, (i.e. y,~) is cyclical with period N as shown in Figure 13.37.
Alternative interpretations are that as the time shift variable, 7, changes, elements of the
time series, y,-, lying outside the (possibly windowed) time series, x,/, are recycled as
shown in Figure 13.38, or that the time series are arranged in closed loops as shown in
Figure 13.39. Figures 13.38 and 13.39 both define the cyclical convolution operation
which is the equivalent time series operation to the multiplication of DFTs.

The cyclic (or periodic) convolution of two N-element time series is contained in a
series which has, itself, N elements. (For normal, or aperiodic, convolution the series has
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Figure 13.37 Periodic interpretation of y,~ resulting in cyclic convolution when using

x; *y, = DFT'[DFT(x,)DFT(y,)] to implement discrete convolution.
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Figure 13.38 Sample recycling interpretation of y, for cyclic convolution.
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Figure 13.39 Closed loop interpretation of x, and y, for cyclic convolution.

2N -1 elements.) A consequence is that if two functions are convolved using equation
(13.63) (thus implying cyclical convolution) then enough zero padding must be used to
ensure that one period of the result is visible, isolated by zeros on either side. If
insufficient leading and/or trailing zeros are present in the original time series then the
convolved sequences will have overlapping ends, Figure 13.40, making normal
interpretation difficult. (In general, to avoid this, the number of leading plus trailing
zeros required prior to cyclical convolution is equal to the number of elements in the
functions to be convolved from the first non-zero element to the last non-zero element.)

13.7 Estimation of BER

For digital communications the quantity most frequently used as an objective measure of
performance is symbol error rate, SER, or equivalently probability of symbol error, P,.
Sometimes more detailed information is desirable, for example it might be important to
know whether errors occur independently of each other or whether they tend to occur in
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Figure 13.40 Use of extra zeros to pad x, and y. in order to avoid overlapping of discrete
convolution replicas in cyclical convolution result: (a) insufficient leading/trailing
zeros leading to overlapping of replicas; (b) padded functions avoiding overlapping.
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Figure 13.41 Principles of Monte Carlo evaluation of SER and BER.

bursts. Here we give a brief outline of two of the methods by which SER (and, if
necessary, second order performance information) can be estimated using simulation.
These are, the Monte Carlo method and the quasi-analytical method. To some extent
these methods represent examples of SER estimation techniques located at opposite ends
of a spectrum of techniques. Other methods exist which have potential advantages under
particular circumstances. A detailed discussion of many of these methods is given in
[Jeruchim et al.].

13.7.1 Monte Carlo simulation

This is the conceptually simplest and most general method of estimating SERs. The
detected symbol sequence at the receiver is compared symbol by symbol with the (error
free) transmitted sequence and the errors are counted, Figure 13.41. The estimated P, is
then given by:

error count

= (13.68)
total symbol count

and the SER is given in equation (6.13) as:
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Figure 13.42 Confidence bands on P, when observed value is 107 for the Monte Carlo technique
based on the normal approximation (source: Jeruchim et al., 1 984, reproduced with
permission of the IEEE).

SER = P,R, (error/s) (13.69)

where R, is the baud rate. Direct Monte Carlo estimation of BER is effected in a similar
way, Figure 13.41. The penalty paid for the simplicity and generality of Monte Carlo
simulation is that if SER is to be measured with both precision and confidence for low
error rate systems, then large numbers of symbols must be simulated. This implies large
computing power and/or long simulation times. If errors occur independently of each
other, and a simulation is sufficiently long to count at least 10 errors, then the width of the
P, interval in which we can be 90%, 95% and 99% confident that the true P, lies may be
found from Figure 13.42. If errors are not independent (for example they may occur in
bursts due to the presence of impulsive noise) then each error in a given burst clearly
yields less information, on average, about the error statistics than in the independent error
case. (At its most obvious each subsequent error in a burst is less surprising, and
therefore less informative, than the first error.) It follows that a greater number of errors
would need to be counted for a given P, confidence interval in this case than in the

independent error case.
13.7.2 Quasi-analytic simulation

Quasi-analytic (QA) simulation can dramatically reduce the required computer power
and/or run time compared with Monte Carlo methods. This is because the QA method
simulates only the effect of system induced distortion occurring in the signal rather than
including the effects of additive noise. It does depend, however, on a knowledge of the
total noise pdf at the decision circuit input. The essence of QA simulation is best
illustrated by a binary signalling example. Figure 13.43(a) shows an (unfiltered)
baseband binary signal, v,(#), representing the output of a binary information source.
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Figure 13.43 Signals at: (a) transmitter binary source output; (b) receiver decision circuit input
after transmission through a distorting but noiseless channel.

Figure 13.43(b) shows the demodulated, but distorted, signal, v,(¢), at the decision circuit
input. If purely additive noise with pdf p,(v) is present at the decision circuit input the
total pdf of signal plus noise at the kth sampling instant is given by:

Psin(V) = po [v —vy(kTp)] (13.70)

where v,(kT,) is the decision instant signal. v,(kT) will depend on the history of the bit
sequence via the intersymbol interference due to the impulse response (i.e. distorting
effect) of the entire system.
The probability, P,(k), that the noise (if present) would have produced an error at the
kth bit sampling instant is:
0 —va(kTo)
Puk) = [ palv=vakToll dv = [ puv) av (13.71(a)

—oa

if v(kTy) > O (i.e. v, represents a transmitted digital 1), and is:
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Figure 13.44 Pdfs of: (a) noise only; (b) signal plus noise at kth sampling instant.
P = [ plv—vakTl dv = [ pu) dv (13.71(6))
0 —va(kTy)

if v (kTy) <O (i.e. v, represents a transmitted digital 0). p,(v), pnlv — va(kTo)], and
v (kTy) are shown in Figure 13.44. If pa(v) is Gaussian then the evaluation of the
integrals is particularly easy using error function look-up tables or series approximations.

The overall probability of error is found by averaging equations (13.71) over many
(N, say) bits, i.e.:

N

1

P, = — 3, Pk (13.72)
N =

N must be sufficiently large to allow essentially all possible combinations of bits, in a

time window determined by the memory of the system, to occur. This ensures that all

possible distorted signal patterns will be accounted for in the averaging process.

EXAMPLE 13.1

As an example of the power and utility of proprietary simulation packages a simplified model of a
satellite communications system is analysed here using Signal Processing WorkSystem (SPW)™
marketed by Comdisco Systems, Inc. SPW is immensely powerful as a simulation tool and only a
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__________________ - ‘ Complex
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Figure 13.45 Block diagram for example simulation.
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fraction of its facilities are illustrated in this example. The system is shown in Figure 13.45 which
has been redrawn to simplify that produced using SPW’s block diagram editor. It consists of a pair
of (independent) random binary data sources which provide the input to a QPSK modulator, Figure
11.23. The symbol rate of each source is 1.0 baud.

The output of the modulator is an equivalent baseband signal and is therefore complex. The
transmitted, uplink, signal is filiered by a 6-pole Chebyshev filter. The bandwidth of this
(equivalent baseband) filter is 1.1 Hz. A satellite channel is modelled analytically using a non-
linear input/output characteristic typical of a travelling wave tube (TWT) amplifier operating with
3.0 dB of input back-off which accounts for both AM/AM and AM/PM distortion (see section
14.3.3). A parameter of the TWT model is its average input power which is set to 2.0 W. The
received, downlink, signal is filtered by a 6-pole Butterworth filter. Signal sink blocks are used to
record the time series data generated as the simulation progresses. It is these signal records which
are analysed to produce the required simulation results.
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Figure 13.46 In-phase (upper) and quadrature (lower) time series data at (a) QPSK modulator
output and the outputs of: (b) Chebyshev filter; (c) TWT, (d) Butterworth filter.
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The simulation sampling rate used is 16 Hz which, for a baud rate of 1.0, corresponds to 16
sample/symbol. The number of samples simulated (called iterations in SPW) is 3,000. Unrealistic
parameters in simulations (e.g. unit baud rate and filter bandwidths of the order of 1 Hz) are typical.
It is, usually, necessary only for parameters to be correct relative to each other for the simulation to
give useful results. (The interpretation of those results must, of course, be made in the proper
context of the parameters used.) Figure 13.46(a), (b), (c) and (d) show the simulated (complex)
time series data at the input to the QPSK modulator, and the outputs from the Chebyshev filter, the
TWT and the Butterworth filter. Note that the ‘random’ component of the signals in Figure
13.46(b), (c) and (d) is not due to noise but is due entirely to the distortion introduced by the
channel.

Figure 13.47(a) and (b) show the magnitude and phase spectra of the pre- and post-filtered
transmitted uplink signals respectively, calculated using a 1024 (complex) point FFT. (The time
series were windowed with a Hamming function prior to the FFT in this case.) Figure 13.47(c)
shows the spectrum of the TWT output. It is interesting to note the regenerative effect that the
TWT non-linearity has on the sidelobes of the QPSK signal, previously suppressed by the
Chebyshev filter. (This effect was briefly discussed in section 11.4.4.) The frequency axes of the
spectra are easily calibrated remembering that the highest observable frequency (shown as 0.5 in
the SPW output) corresponds to half the sampling rate, i.e. 16/2 = 8 Hz, see section 13.5.3.

A QA simulation routine available in SPW has been run to produce the SER versus E,/N,
curve shown in Figure 13.48. QA simulation is applicable if the system is linear between the point
at which noise is added and the point at which symbol decisions are made. In this example we
assume that noise is added at the satellite (TWT) output. This corresponds to the, often realistic,
situation in which the downlink dominates the CNR performance of a satellite communication
system, see section 14.3.3.

The way in which SPW implements QA simulation is as follows:

1. The equivalent noise bandwidth, By, of the system segment between the noise injection point
and the receiver decision circuit is estimated from a (separate) simulation of this segment’s

impulse response, A(t), i.e.:
By = J.Ih(t)lz dt (13.73)
0

2. The signal power at the input to the receiver, C (in this example the input to the Butterworth
filter) is estimated from the time series contained in the appropriate signal sink file (ie.

iagsig/twtout.sig, see Figure 13.46(c)).
3. The required range and interval values of E,/N, are specified and, for each value of E,/N, the

normalised (Gaussian) noise power, N (= ¢?), is found using:
0% = NyBy (V) (13.74(a))

where:

_CT, _ CIRH) )
Mo = Egng = Eavy (13740
(Here H is the number of binary digits/symbol, i.e. it is the entropy assuming zero redundancy.
Thus in this example H = 2.)
4. If centre point sampling is required then the distances, d, and d,, from the decision thresholds
of the (complex) sample at the centre of each received symbol is calculated, see Figure 13.49.
(For MPSK and MQAM systems SPW assumes constellations which are regular, thus allowing
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Figure 13.48 Result of P, versus E, /N, (dB) for a quasi-analytic (QA) analysis of system shown
in Figure 13.45. (P, is plotted on a logarithmic scale so 1072 is represented by =2.)
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Figure 13.49 Definition of QPSK received sample distances d, and d, from the decision
thresholds (X represents transmitted constellation point and * a received sample).

all constellation points to be folded into the first quadrant before this calculation is carried out.)

Although centre point sampling is typical, SPW allows the user to specity which sample within

the symbol is to be used as the decision sample.

5. The probability of error for the particular sampling point selected, in the particular symbol
being considered, is then calculated using d,, d,, o and the error function.

6. The probability of error is averaged over many (N) symbols. (N is typically a few hundred but
should be large enough to allow all sequences of symbols, possible in a time window equal to
the duration of the impulse response estimated in 1, to occur at least once.)

Many other analysis routines are provided in SPW, for example the scatter plot of Figure 13.50
which shows the scatter of simulation points, at the Butterworth filter output (decision circuit
input), about the nominal points of the QPSK constellation diagram. Figure 13.51 shows the eye
diagram (across two symbols) of the received signal’s inphase components at thc Butterworth filter
output, on a much expanded timescale compared to Figure 13.46.
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Figure 13.50 Scatter of simulation QPSK constellation points at Butterworth filter output
(decision circuit input) in Figure 13.45.
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Figure 13.51 Eye diagram for in-phase component (I) of signal at Butterworth filter output.

13.8 Summary

Simulation is now a vital part of the design process for all but the simplest of
communications systems. It enables performance to be assessed in the presence of noise,
interference, and distortion, and allows alternative design approaches to be compared
before an expensive construction phase is implemented. Since simulation is based on
discrete samples of underlying continuous signals, it is usual for passband systems (with
the exception of those which are non-linear and have long memory) to be simulated as
equivalent (complex) baseband processes. The distortion introduced by the sampling and
quantisation, required for simulation, needs to be carefully considered to ensure it does
not significantly alter the simulation results. Noise modelling using random numbers or
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pseudo-random bit sequences must also be implemented carefully to ensure that
simulated noise samples faithfully represent both the spectral and pdf properties of the
actual noise present in the system.

Transformation between time and frequency domains during a simulation is
frequently required. This is because some simulation processes are more easily (or more
efficiently) implemented in one domain rather than the other, and also because some
simulation results are more easily interpreted in one domain rather than the other. Digital
signal processing algorithms (principally the FFT) are therefore used to translate between
domains. An adequate understanding of effects such as smoothing, leakage, windowing
and zero padding is required if these algorithms are to be used to best effect. It is also
important that the output of DFT/DFS software is properly interpreted and processed if a
numerically accurate representation of a power, or energy, spectral density is required.

Finally, in the assessment of most types of digital communications system the
principal objective measure of performance is BER. For systems which are linear,
between the point at which noise is introduced and the point at which symbol decisions
are made, quasi-analytic (QA) simulation is extremely efficient in terms of the computer
resources required. QA simulation does require the noise pdf at the decision circuit input
to be known, however. The most general method of estimating BER uses Monte-Carlo
simulation in which neither a linearity restriction (on the system through which the noise
passes prior to detection), nor any apriori knowledge of the noise characteristics at the
decision circuit input, is needed. Monte-Carlo simulation can become very expensive in
terms of computer power and/or run time, however, if accurate estimates of small error
probabilities are required.



Part Three

Applications

Part 3 shows how the principles described in Part Two are applied in a selection
of fixed and mobile data applications for voice and video transmission.

The link budget analysis presented in Chapter 12 is extended in Chapter 14 to
less idealised fixed service, terrestrial and satellite, microwave communication
systems, and includes important propagation effects such as rain fading,
multipath fading and signal scintillation. The special problems posed by the
exceptionally long range of satellite systems are also discussed as are frequency
allocations, multiplexing and multiple accessing schemes.

Mobile, cellular and paging applications are described in Chapter 15
including examples of current systems such as personal cordless, GSM 900, DCS
1800 and DECT. These systems all limit their transmissions to small
geographical areas, or cells, permitting frequency reuse in close proximity,
without incurring intolerable levels of interference. This maximises the number
of active users per cell who can be accommodated per MHz of allocated
bandwidth. This chapter also includes evolving standards for CDMA spread
spectrum cellular radio, and future satellite-mobile systems.

Finally, Chapter 16 discusses the specific requirements of digitisation,
transmission and storage for video applications. It includes examples of HDTV
development as well as low bit rate video compression coders using transform
and model based coding techniques, as employed in MPEG and other video
coding standards.




