CHAPTER 10
Error control coding

10.1 Introduction

The fundamental resources at the disposal of a communications engineer are signal
power, time and bandwidth. For a given communications environment (summarised in
this context by an effective noise power spectral density) these three resources can be
traded against each other. The basis on which the trade-offs are made will depend on the
premium attached to each resource in a given situation. A general objective, however, is
often to achieve maximum data transfer, in a minimum bandwidth while maintaining an
acceptable quality of transmission. The quality of transmission, in the context of digital
communications, is essentially concerned with the probability of bit error, P,, at the
receiver. (There are other factors which determine transmission quality, in its widest
sense, of course, but focussing on P, makes the discussion, and more especially the
analysis, tractable.)

The Shannon-Hartley law (see section 11.4.1) for the capacity of a communications
channel demonstrates two things. Firstly it shows (quantitatively) how bandwidth and
signal power may be traded in an ideal system, and secondly it gives a theoretical limit
for the transmission rate of (reliable, i.e. error free) data from a transmitter of given
power, over a channel with a given bandwidth, operating in a given noise environment.
In order to realise this theoretical limit, however, an appropriate coding scheme (which
the Shannon-Hartley law assures us exists) must be found. (It should, perhaps, be noted
at this point that there is one more quantity which must be traded in return for the
advantage which such a coding scheme confers, i.e. time delay which results from the
coding process.)

In practice, the objective of the design engineer is to realise the required data rate
(often determined by the service being provided) within the bandwidth constraint of the
available channel and the power constraint of the particular application. (In a mobile
radio application, for example, bandwidth may be determined by channel allocations or
frequency coordination considerations, and maximum radiated power may be determined
by safety considerations or transceiver battery technology.) Furthermore this data rate

330 Error control coding

must be achieved with an acceptable BER and time delay. If an, essentially, uncoded
PCM transmission cannot achieve the required BER within these constraints then the
application of error control coding may be able to help, providing the constraints are not
such as to violate the Shannon-Hartley law.

Error control coding (also referred to as channel coding) is used to detect, and often
correct, symbols which are received in error. Error detection can be used as the initial
step of an error correction technique by, for example, triggering a receiving terminal to
generate an automatic repeat request (ARQ) signal which is carried, by the return path of
a duplex link, to the originating terminal. A successful retransmission of the affected
data results in the error being corrected. If ARQ techniques are inconvenient, as is the
case, for example, when the propagation delay of the transmission medium is large, then
forward error correction coding (FECC) may be appropriate [Blahut 1983, Clark and
Cain, MacWilliams and Sloane]. FECC incorporates extra information (i.e. redundancy)
into the transmitted data which can then be used not only to detect errors but also to
correct them without the need for any retransmissions.

Table 10.1 A raxonomy of error control codes.

ARQ FECC
Smp. & Conu.nm?u§ ARQ Block codes Convolutional
wait (pipelining) codes
Go-back-N | Sclective repeat Others Group
{non-linear) (linear)
Others Polynomially generated
(non-cyclic) (cyclic)
Golay BCH
Reed-Solomon Binary BCH
Hamming{e=1) | e>1

This chapter begins with a general discussion of error rate control, in its widest sense,
as may be applied in digital communications systems. Five particular error control
methods are identified and briefly described. It is one of these methods, namely FECC,
which is then treated in detail during the remainder of the chapter. Some typical
applications of FECC are outlined and the threshold phenomenon is highlighted. The
Hamming distance between a pair of codewords and the weight of a codeword are
defined. The discussion of FEC codes, that follows, is structured loosely around the
taxonomy of codes shown in Table 10.1 starting with a description of block codes and
including special mention of linear group codes, cyclic codes, the Golay code, BCH
codes, Reed-Solomon codes and Hamming codes. The Hamming bound on the
performance of a block code is derived and strategies for nearest neighbour, or maximum
likelihood, decoding are discussed. Convolution coding is treated towards the end of the
chapter. Tree, trellis and state transition diagrams are used to illustrate the encoding
process. The significance of constraint length and decoding window length are discussed
and Viterbi decoding is illustrated using a trellis diagram. Decoding is accomplished by
finding the most likely path through the trellis and relating this back to the transmitted

Introduction 331

data sequence.

Coding concepts are presented, here, with an essentially non-mathematical treatment,
in the context of specific examples of group, cyclic and convolutional codes. The chapter
concludes with a brief discussion of practical coders.

10.1.1 Error rate control concepts

The normal measure of error performance is bit-error rate (BER) or the probability of bit
error (P,). P, is simply the probability of any given transmitted binary digit being in
error. The bit error rate is, strictly, the average rate at which errors occur and is given by
the product PR}, where R, is the b1t transmission rate in the channel. Typical long term
P, for linear PCM systems is 1077 while, for companded PCM, it is 1075 and for
ADPCM (Chapter 5) it is 107*. If the error rate of a particular system is too large then
what can be done to make it smaller? The first and most obvious solution is to increase
transmitter power, but this may not always be desirable, for example in man-portable
systems where the required extra battery weight may be unacceptable.

A second possible solution, which is especially effective against burst errors caused
by signal fading, is to use diversity. There are three main types of diversity: space
diversity, frequency diversity, and time diversity. All these schemes incorporate
redundancy in that data is, effectively, transmitted twice: i.e. via two paths, at two
frequencies, or at two different times. In space diversity two or more antennas are used
which are sited sufficiently far apart for fading at their outputs to be decorrelated.
Frequency diversity employs two different frequencies to transmit the same information.
(Frequency diversity can be in-band or out-band depending upon the frequency spacing
between the carriers.) In time diversity systems the same message is transmitted more
than once at different times.

A third possible solution to the problem of unacceptable BER is to introduce full
duplex transmission, implying simultaneous 2-way transmission. Here when a
transmitter sends information to a receiver, the information is ‘echoed’ back to the
transmitter on a separate feedback channel. Information echoed back which contains
errors can then be retransmitted. This technique requires twice the bandwidth of single
direction (simplex) transmission, however, which may be unacceptable in terms of
spectrum utilisation.

A fourth method for coping with poor BER is automatic repeat request (ARQ). Here
a simple error detecting code is used and, if an error is detected in a given data block,
then a request is sent via a feedback channel to retransmit that block. There are two
major ARQ techniques. These are stop and wait, in which each block of data is
positively, or negatively, acknowledged by the receiving terminal as being error free
before the next data block is transmitted, and continuous ARQ, in which blocks of data
continue to be transmitted without waiting for each previous block to be acknowledged.
(In stop and wait ARQ data blocks are timed out if neither a positive nor negative
acknowledgement is received within a predetermined time window. After timing out the
appropriate data block is retransmitted in the same way as if it had been negatively
acknowledged.) Continuous ARQ can, in turn, be divided into two variants. In the go-

332 Error control coding

back-n version, data blocks carry a sequence or reference number, n. (This is a different n
to that used in the (z,k) block code notation later) Each acknowledgement signal
contains the reference number of a data block and effectively acknowledges all data
blocks up to n — 1. When a negative acknowledgement is received (or a data block timed
out) all data blocks starting from the reference number in the last acknowledgement
signal are retransmitted. In the selective repeat version only those data blocks explicitly
negatively acknowledged (or timed out) are retransmitted (necessitating data block
reordering buffers at the receiver). Go-back-n ARQ has a well defined storage
requirement whilst selective repeat ARQ, although very efficient, has a less well defined,
and potentially much lager, storage requirement, especially when deployed on high speed
links. ARQ is very effective, for example in facsimile transmission, Chapter 9. On long
links with fast transmission rates, however, such as is typical in satellite communications,
ARQ can be very difficult to implement.

The fifth technique for coping with high BER is to employ forward error correction
coding (FECC). In common with three of the other four techniques FECC introduces
redundancy, this time with data check bits interleaved with the information traffic bits. It
relies on the number of errors in a long block of data being close to the statistical average
and, being a forward technique, requires no return channel. The widespread adoption of
FECC was delayed, historically, because of its complexity and high cost of
implementation relative to the other possible solutions. Complexity is now less of a
problem following the proliferation of VLSI custom coder/decoder chips.

FECC exploits the difference between the transmission rate or information bit rate R),
and the channel capacity R, as given by the Shannon-Hartley law (see equation
(11.38)). P, can be reduced, at the expense of increasing the transmission delay
[Schwartz, 1987], by using FECC with a sufficiently long block or constraint length. The
increased transmission delay arises due to the need to assemble the data blocks to be
transmitted and the time spent in examining received data blocks to correct errors. The
benefits of error control, however, usually outweigh the inherent FECC processor delay
disadvantages.

10.1.2 Threshold phenomenon

Figure 10.1 illustrates the error rate for an uncoded system in which P, increases
gradually as SNR decreases, as shown previously in Figure 6.3. Figure 10.1 is plotted as
the ratio of bit energy to noise power spectral density (E,/Ng), which is defined later in
Chapter 11. With FECC the P, versus E,/N, curve is steeper. If the SNR is above a
certain value, which here corresponds to an E,/N; of around 6 dB, the error rate will be
virtually zero. Below this value system performance degrades rapidly until the coded
system is actually poorer than the corresponding uncoded system. (The reason for this is
that there is a region of low E,/N, where, in attempting to correct errors, the decoder
approximately doubles the number of errors in a decoded codeword.) This behaviour is
analogous to the threshold phenomenon in wide band frequency modulation. A coding
gain can be defined, for a given P;,, by moving horizontally in Figure 10.1 from the
uncoded to the coded curve. The value of the coding gain in dB is relatively constant for

Introduction 333

107!
1072
Py

07

107

T o SR AN O N U VO ' SO BT W
0123456782910
E,/No (dB)

Figure 10.1 The threshold phenomenon in FECC systems.
P,<107, and is dependant on the precise details of the FECC system deployed.

10.1.3 Applications for error control

Compact disc players provide a growing application area for FECC. In CD applications
the powerful Reed-Solomon code is used since it works at a symbol level, rather than at a
bit level, and is very effective against burst errors, particularly when combined with
interleaving to randomise the bursts. The Reed-Solomon code is also used in computers
for data storage and retrieval. Cosmic particles create, on average, one error every two to
three days in a 4 Mbyte memory, although small geometry devices are helping to reduce
this probability. Digital audio and video systems are also areas in which FECC is
applied. Error control coding, generally, is applied widely in control and
communications systems for aerospace applications, in mobile (GSM) cellular telephony
and for enhancing security in banking and barcode readers.

10.2 Hamming distance and codeword weight

Before embarking on a detailed discussion of code performance the following definitions
are required. The Hamming distance between two codewords is defined as the number of
places, bits or digits in which they differ. This distance is important since it determines
how easy it is to change or alter one valid codeword into another. The weight of a binary
codeword is defined as the number of ones which it contains.

334 Error control coding

EXAMPLE 10.1
Calculate the Hamming distance between the two codewords 11100 and 11011 and find the

minimum codeword weight.

The two codewords 11100 and 11011 have a Hamming distance of 3 corresponding to the
differences in the 3rd, 4th and Sth digit positions. Thus with three appropriately positioned errors
in these locations the codeword 11100 could be altered to 11011,

In this example, 11011 has a weight of 4 due to the four ones and 11100 has a weight of 3. The
minimum weight is thus 3. Hamming distance and weight will be used later to bound the error
correcting performance of codewords.

10.3 (»,«) Block codes

Figure 10.2 illustrates a block coder with k information digits going into the coder and n
digits coming out after the encoding operation. The n-digit codeword is thus made up of
k information digits and (n — k) redundant parity check digits. The rate, or efficiency, for
this code (R) is k/n, representing the ratio of information digits to the total number of
digits in the codeword. Rate is normally in the range % to unity. (Unlike source coding
in which data is compressed, here redundancy is deliberately added, to achieve error
detection.) This is an example of a systematic code in that the information digits are
explicitly transmitted together with the parity check digits, Figure 10.2. In a non-
systematic code the n digit codeword may not contain any of the information digits
explicitly. There are two definitions of systematic codes in the literature. The stricter of
the two definitions assumes that, for the code to be systematic, the k information digits
must be transmitted contiguously as a block, with the parity check digits making up the
codeword as another contiguous block. The less strict of the two definitions merely
stipulates that the information digits must be included in the codeword but not necessarily
in a contiguous block. The latter definition is the one which is adopted here.

k information Block n encoded
digits coder digits
Rate, R=k/n
B n- .
Information Parity
digits digits

n digit codeword

Figure 10.2 (n, k) systematic block code.

(n,k) Block codes 335

10.3.1 Single parity check code

The example in Figure 10.3 will be familiar to many as an option in ASCII coded data
transmission (see Chapter 8). Consider the data sequence 1101000, to which a single
parity check digit (P) is added. For even parity in this example sequence, P will be 1.
For odd parity, P will be 0. Since the seven information digits contain three ones, another
I must be added giving an even number of ones to achieve even parity. Alternatively if a
zero is added, ensuring an odd number of ones, i.e. odd parity, the transmission of the all
zero codeword is avoided. Even parity is, however, much more common.

Here the rate, R =k/n, is seven eighths which represents a very low level of
redundancy. This scheme can only identify an odd number of errors because an even
number of errors will not violate the chosen parity rule. Single error detection, as
illustrated in Figure 10.4, is often used to extend a 7-bit word, with a checksum bit, into
an 8-bit codeword. Another example, used in libraries, is the 10-digit ISBN codeword,
Figure 10.5. This uses a modulo 11, weighted, checksum in which the weightings are 10
for the first digit, 9 for the second digit, etc. down to 2 for the ninth digit (and 1 for the
checksum). The weighting can be applied either left to right or vice versa and a
checksum digit of 10 is represented by the symbol C.

Single parity checks are also used on rows and columns of simple two-dimensional
data arrays, Figure 10.6. Single errors in the array will be detected and located via the
corresponding row and column parity bits. Such errors can therefore be corrected.
Double errors can be detected but not necessarily corrected as several error patterns can
produce the same parity violations. When the data is an array of ASCII characters the
row and column check words can also be sent as ASCII characters.

In the English language there is a high level of redundancy. This is why spelling
mistakes can be corrected and abbreviations expanded. There is, in fact, an approximate
correspondence between the words of a language and code words as being discussed
here, although in language contextual information goes beyond isolated words whilst in a
block code each codeword is decoded in isolation.

Modulo 2" —1 checksums are in widespread use for performing error detection on
byte-serial network connections. They are usually computed by software during the data
block (or packet) construction. One such error detection code is the Internet checksum
for protocol messages [Comer], Chapter 18. If a message of length w (16-bit) bytes:

Lifrfofrfofofofr]

7 information | 1 parity
digits | check digit

P =1 (even parity)
P =0 (odd parity)

_k_7
R=1=3

Figure 10.3 Example of a single parity check digit codeword.

336 Error control coding

Example: Even parity

x[1ft{o]tlofofo]t]v
Releftfolr[r]o]oli]x
* Error

Detects odd number of errors

Figure 10.4 Block code with single parity check error detecting capability.

9
Checksum, C=11 —2:[(11 —i)k; (mod-11)

i |t 2 3456 7891 C
ISBN JO 1 9 8 5 3 8 0 4, 9

Figure 10.5 ISBN codeword and checksum calculated to satisfy Zil:l (1 -k; =0 (mod-11).

n
kb
format £
nformatton k2]
ml ok bits S
2
=]
=4
Column checks Check on
checks
Figure 10.6 Two-dimensional row—column array code.
Mm,_y, ", Mg is to be checksummed, the one-byte checksum is just the complement of:

w—1

Y m; (mod - 65535)

i=0
The main operation required for this is summation modulo-65535 (i.e. summation using
one’s complement word addition). The checksum is included with the transmitted
message allowing a recipient to check for transmission errors by performing a similar
summation over the received data. If this sum is not zero then a channel error has
occurred. Another error detection code is the ISO two-byte checksum [Fletcher]. The
checksum is again included within the transmitted message and a recipient can perform a
summation over the received data to confirm that both checksum bytes are zero; if not, a

channel error has occurred.

(n, k) Block codes 337

EXAMPLE 10.2

Figure 10.7 illustrates a seven digit codeword with four information digits (I, to /,) and three parity
check digits (P, to P3;), commonly referred to as a (7,4) block code. The circles indicate how the
information bits contribute to the calculation of each of the parity check bits. Assuming even
parity, show the realisation of this encoder using 3-input modulo-2 adders. Calculate the individual
parity check bits and encoding of P, P, and P; for the information digits 1011.

Figure 10.7 shows P, represented by the modulo-2 sum of /,, /5 and I;. P, is the sum of /,, [, and
14, etc. (Modulo-2 arithmetic was used previously in Table 8.1.) The parity check digits are
generated by the circuit in Figure 10.8. For the data sequence 1011, the 3-input modulo-2 adders
count the total number of ones which are present at the inputs, and output the least significant bit as
the binary coded sum. Thus P, =1, P, = 0 and P, = 0, giving a coder output of 1011100.

Il. L L I . P P P;,l

Figure 10.8 (7,4) block code hardware generation of three parity check digits.

338 Error control coding

Figure 10.9 shows how parity check equations for Py, P, and P3 in the above example
may be written using @ to represent the modulo-2 or exclusive-or arithmetic operation.
Figure 10.9 also shows how these equations can be reduced to matrix form in a parity
check matrix H. The coefficients of the information digits I, I5, I3 and I4 are to the left
of the dotted partition in the parity check matrix. The top row of the matrix contains the
information about parity check Py, the second row about parity check P, and the third
row about parity check P;.

Consider the top left hand part of the matrix (1011). The coefficients 1011
correspond to the information digits I, I3 and I, in the equation for P;. Similarly, the
second row is 1101 to the left of the partition because /5 is not involved in calculating
parity check P, and the corresponding part of the bottom row is 1110 because 4 is not
involved in calculating the parity check P;, Figure 10.8. To the right of the dotted
partition there is a 3 x 3 diagonal matrix of ones. Each column in this diagonal matrix
corresponds to a particular parity check digit. The first column (100) indicates parity
check P;. The second column indicates parity check P, and the third column parity
check P5. Later, in section 10.7, a generator matrix will be used to obtain the codeword
directly from the information vector.

10.4 Probability of error in »-digit codewords

What is the probability of having more than R’ errors in an n-digit codeword? First
consider the case of exactly j errors in n digits with a probability of error per digit of P,.
From Chapter 3, equation (3.8):

P(j errors) = (P,)) (1= P,y x"C; (10.1)

The probability of having more than R’ errors can be written as:

R

P(> R errors) = 1 - 3, P(j) (10.2)

j=0

Statistical stability controls the usefulness of this equation, statistical convergence
occurring for long code words or blocks (see Figure 3.2). A long block effectively
embodies a large number of trials, to determine whether or not an error will occur, and
the number of errors in such a block will therefore be close to P, n. Furthermore, the
fraction of blocks containing a number of errors that deviates significantly from this value

Pl=1x1,®0xL®1xL®1x1,
Py=1x1,®1xL®0x1® 1 X1
Pi=Ix@1IxXLOIxL©0X],

1011 : 100
H= [1101 : 010
11103 001

Figure 10.9 Representation of the code in Figure 10.7 by parity check equatibns and an H matrix.

Probability of error in n-digit codewords 339

becomes smaller as the block length, n, becomes larger, Figurc 3.2. Choosing a code that
can correct P,n errors in a block will ensure that there are very few cases in which the
coding system will fail. This is the rationale for long block codes. The attraction of
block codes is that they are amenable to precise performance analysis. By far the most
important, and most amenable, set of block codes are the linear group codes.

10.5 Linear group codes

The codewords in a linear group code have a one-to-one correspondence with the
elements of a mathematical group. Group codes contain the all-zeros codeword and have
the property referred to as closure. That is, taking any two codewords C; and C}, then
C; ®C;=Cy. (For the all zeros codeword, when i =0, then k= j.) Thus adding,
modulo-2, corresponding pairs of digits in each of the codewords produces another
codeword C,. The presence of the all-zeros codeword and the closure property together
make performance calculations with linear group codes particularly easy, as will be seen
later. Figure 10.10 illustrates a simple group code which will be used as an example in
this chapter. It is first used to illustrate the property of closure. Figure 10.10 depicts a
source alphabet with 4 members: a, b, ¢ and d (i.e. the number of information digits is
k =2). Each symbol is coded into an r-digit codeword (where n = 5) as shown. This is
therefore a (5,2) code. (By the less strict definition, this is also a systematic code where
the information digits are in columns 1/2 and 4/5.) Consider the codewords
corresponding to ¢ and b. Modulo-2 summing ¢ and & gives the codeword d, illustrating
the closure property.

10.5.1 Members of the group code family

Group codes can be divided into two types: those which are ‘polynomial generated’ in
simple feedback shift registers; and others. The simplicity of the former have rendered
the rest irrelevant. The polynomial generated codes can be further divided into
subgroups, the main ones being the binary Bose—Chaudhuri-Hocquenghem (BCH) codes

Codewords
a=00 00000
b=01 00111
c=140 11100
d=11 11011
- —
k=2 n=>5
c®b=4d
c=11100
b=00111
d=11011

Figure 10.10 [lllustration of the closure property of a group code.

340 Error control coding

and their important, non-binary counterpart, the Reed-Solomon codes. BCH codes are
widely tabulated up to n = 255 with an error correcting capability of up to 30 digits
[Blahut, 1983]. Generally speaking for the same error correcting capability a larger (e.g.
n = 255) block size offers a higher rate than a shorter (e.g. n = 63) block size. Reed-
Solomon, non-binary, byte organised codes are used extensively in compact disc players

and computer memories.
10.5.2 Performance prediction

Normally all possible codeword pairs would have to be examined, and their Hamming
distances measured, to determine the overall performance of a block code. For the case
of group codes, however, consideration of each of the codewords with the all-zeros
codeword is sufficient. This is a significant advantage of linear group codes and one
reason why these codes are so important in relation to other block codes. (Analysis for
large n becomes much simpler for group codes, since the number of combinations of
codewords, which would otherwise have to be searched, is very large.)

The important quantity, as far as code performance prediction is concerned, is the
minimum Hamming distance between any pair of codewords. For the four five-digit
codewords in Figure 10.10-00000,00111,11100, 1 101 1, inspection reveals a
minimum Hamming distance of 3, i.e. Dy, =3 for this (5,2) code. Other (n, k) block
codes with this minimum distance of 3 are (3,1), (15,11), (31,26), etc.

The weight structure of a set of codewords is just a list of the weights of all the
codewords. Consider the previous example with 4 codewords: the weights of these are 0,
3, 3 and 4. Ignoring the all-zeros word (as interest is concentrated in the distances from
this codeword), the minimum weight in the weight structure (3) is equal to Dy, the
minimum Hamming distance for the code.

Consider the probability of the ith codeword (C;) being misinterpreted as the jth
codeword (C;). This probability depends on the distance between these two codewords
(Dy). Since thlS is a linear group code, this distance Dj; is equal to the weight of a third
codeword C, which is actually the modulo-2 sum of C; and C;. The probability of C;
being mistaken for C; is therefore equal to the probability of C « being mistaken for Cj.
Furthermore, the probablhty of C, being mistaken for the all-zeros codeword (Cp) is
equal to the probability of Cy being misinterpreted as C; (by symmetry). The probability
of C, being misinterpreted as C;, depends only on the weight of Cy.

This reasoning reveals the importance of a linear group code’s weight structure since
the performance of such a code can be determined completely by consideration of Cg and

the weight structure alone.
10.5.3 Error detection and correction capability

The maximum possible error correcting power, f, of a code is defined by its ability to
correct all patterns of ¢ or less errors. It is related to the code’s minimum Hamming

distancc by:

Linear group codes 341

t = int (D““—“_l) (10.3(a))
2
where:
Do,—1=ce+t (10.3(b))

Here int() indicates ‘the integer part of’, e is the total number of detectable errors
(including the correctable ¢ errors) and ¢ < e. Taking the case where Dy, is 3, then there
are at least two possible binary words which lie between each pair of valid codewords. In
Example 10.1 these could be the binary words 11000 and 11001. If any single error
occurs in one of the code words it can therefore be corrected. Alternatively, if there is no
error cotrection D, — 1 errors can be detected (2 in this case as both 11000 and 11001
are detectable as errors). Note that the code cannot work in both these detection and
correction modes simultaneously (i.e. detect two errors and correct one of them).

Longer codes with larger Hamming distances offer greater detection and correction
capability by selecting different # and e values in equation (10.3). Dy, = 7 can offer ¢ =
1 bit correction combined with e = 5 bit error detection. If ¢ is increased to 2 then e must
decrease to 4. The UK Post Office Code Standards Advisory Group (POCSAG) code
with k = 21 and n = 32 is an R = 2/3 code with D, = 6. This provides a 3-bit error
detection or a 2-bit error correction capability, for a codeword which is widely used in
pager systems, see Chapter 15. The n = 63, k = 57, BCH code gives R = 0.9 with 7 = 1
bit, while reducing k to 45 gives R = 0.7 with ¢ = 3 bit. Further reducing k to 24 reduces
R to below 0.4 but achieves a t = 7 bit correction capability. This illustrates the important
trade-off between rate and error correction power. BCH codes can correct burst, as well
as random, errors.

10.6 Nearest neighbour decoding of block codes

Encoding is achieved by use of a feedback shift register and is relatively simple as will be
shown later. The two most important strategies for decoding are nearest neighbour and
maximum likelihood decoding. These are equivalent if the probability of ¢ errors is much
greater than that of 7 + 1 errors, etc. as in Example 3.4. Using a decoding table based on
nearest neighbours, therefore, implies the maximum likelihood decoding strategy, as
discussed in the context of decision theory in Chapter 9. This is illustrated with a simple
example.

Figure 10.11 is a nearest neighbour decoding table for the previous four-symbol
example of Figure 10.10. The codewords are listed along the top of this table starting
with the all-zeros codeword in the top left hand corner. Below each codeword all
possible received sequences are listed which are at a Hamming distance of 1 from this
codeword. (In the case of the all-zeros codeword these are the sequences 10000 to
00001.) If this were a ¢ error correcting code this list would continue with all the patterns
of 2 errors, 3 errors, etc. up to all patterns of ¢ errors. Any detected bit pattern appearing
in the table is interpreted as representing the codeword at the top of the relevant column,

342 Error control coding

thus allowing the bit errors to be corrected. Below the table in Figure 10.11 there are
eight 5-bit words which lie outside the table. These received sequences are equidistant
from two possible codewords, so these sequences lie on a decision boundary. It is not
possible, therefore, to decide which of the two original codewords they came from, and
consequently the errors cannot be corrected. These sequences were referred to previously

as detectable error sequences.
10.6.1 Hamming bound

Consider the possibility of a code with codewords of length n, comprising k information
digits and having error correcting power ¢. There is an upper bound on the performance
of block codes which is given by:
2n
1+n+2Cy+"Cy+--+"C,

(10.4)

2k

The simplest way to derive equation (10.4) is to inspect the nearest neighbour decoding
table for the (n, k), t-error correcting code. Figure 10.12 develops Figure 10.11 into the
general case of a t-error correcting code with 2k codewords. There are, thus, 2¥ columns

Codewords 00000 | 11100 | 0Of11 { 11011

10000 | 01100 | 10111 | 01011
Single-bit || 01000 | 10100 | O111F | 10011

error correctable < | 00100 | 11000 | 00011 | 11111
patterns 11 gq010 | 11110 | 00101 | 11001

00001 | 11101 | 00110 | 11010

Double-bil{ 10001 01101 10110 01010

detectabl
T ttemns | 10010 01110 10101 01001

Figure 10.11 Nearest neighbour decoding table for the group code of Figure 10.9.

2% columns 1
1 00..0 [0 T I Cpt
100..0 .
010..0 Single
n : : crrors
000... 1
nc, Double errors
ne, t errors

Rows=[1+n+"Cy+..+"C/]

Figure 10.12 Decoding table for a t-error correcting (n, k) block code.

Nearest neighbour decoding of block codes 343

in the decoding table. Consider the left hand column. The all-zeros codeword itself is,
obviously, one possible correctly received sequence or valid codeword. Also there are n
single error patterns associated with that all-zeros codeword. Further, there are "C,
patterns of 2 errors, etc. down to "C, patterns of ¢ errors. Totalling the number of entries
in this column reveals the total number of rows in the table and the value of the
denominator in equation (10.4). Taking this number of rows and dividing into 2" (which
is the total number of possible received sequences), as in equation (10.4), gives the
maximum possible number of columns and hence the maximum number of codewords in
the given code. If the left hand side of equation (10.4) is greater than the right hand side
then no such code exists and #» must be increased, k decreased, or ¢ decreased, until
equation (10.4) is satisfied. For a perfect code, equation (10.4) is an equality. This
implies that there are no bit patterns which lie outside the decoding table, avoiding the
problem of equidistant errors which occurred in the code of Figure 10.11.

10.7 Syndrome decoding

The difficulty with decoding of block codes using the nearest neighbour decoding table
of Figure 10.12 is the physical size of the table for large n. The syndrome decoding
technique described here provides a solution to this problem.

10.7.1 The generator matrix

The generator matrix is a matrix of basis vectors. The rows of the generator matrix G are
used to derive the actual transmitted codewords. This is in contrast with the H (or parity
check) matrix, Figure 10.9, which does not contain any codewords. The generator matrix
G for an (n, k) block code can be used to generate the appropriate n-digit codeword from
any given k-digit data sequence. The H and corresponding G matrices for the example
(7,4) block code of Figure 10.8 are shown below:

[1011:100]
H=|1101:010 (10.5)
[1110:001 |

[1000:1117
0100:011

G = .
0010:101 (10.6)

L0001:110 |

Study of G shows that on the left of the dotted partition there is a 4 x 4 unit diagonal
matrix and on the right of the partition there is a parity check section. This part of G is
the transpose of the left hand portion of H. As this code has a single error correcting
capability then D, and the weight of the codeword, must be 3. As the identity matrix
has a single one in each row then the parity check section must contain at least two ones.
In addition to this constraint, rows cannot be identical.

344 Error control coding

Continuing the (7,4) example, we now show how G can be used to construct a
codeword, using the matrix equation (4.13) [Spiegel]. Assume the data sequence is 1001.
To generate the codeword associated with this data sequence the data vector 1001 is
multiplied by G using modulo-2 arithmetic:

1000111

[1001] 0100011 =[1001001] (10.7)
0010101 | :

0001110

The 4 x 4 unit diagonal matrix in the lefthand portion of G results in the data sequence
1001 being repeated as the first four digits of the codeword and the right hand (parity
check) portion results in the three parity check digits Py, P, and P; (in this case 001)
being calculated. (This generator matrix could, therefore, be applied to solve the second
part of Example 10.2.)

It is now possible to see why the columns to the right of the partition in G are the
rows of H to the left of its partition. From another standpoint the construction of a
codeword is viewed as a weighted sum of the rows of G. The digits of the data sequence
perform the weighting. With digits 1001 in this example, the top row of G is weighted by
1, the second row by 0, the third row by 0 and the fourth row by 1. After weighting the
corresponding digits from each row are added modulo-2 to obtain the required codeword.

10.7.2 Syndrome table for error correction

Recall the strong inequality that the probability of t errors is much greater than the
probability of ¢+ 1 errors. This situation always holds in the P, regime where FECC
systems normally operate. Thus nearest neighbour decoding is equivalent to maximum
likelihood decoding. Unfortunately, the nearest neighbour decoding table is normally too
large for practical implementation which requires a different technique, involving a
smaller table, to be used instead. This table, referred to as the syndrome decoding table,
is smaller than the nearest neighbour table by a factor equal to the number of codewords
in the code set (2%). This is because the syndrome is independent of the transmitted
codeword and only depends on the error sequence as is demonstrated below.

When d is a message vector of k digits, G is the k X n generator matrix and c is the n
digit codeword corresponding to the message d, equation (10.7) can be written as:

dG =c¢ (10.8)
Furthermore:

He =0 (10.9)
where H is the (even) parity check matrix corresponding to G in equation (10.8). Also:

r=c®e (10.10)

where r is the sequence received alter transmitting ¢, and e is an error vector representing
the location of the errors which occur in the received sequence r. Consider the product H

Syndrome decoding 345

He=s
Error pattern Syndrome
0000000 000
1000000 t1d
0100000 011
0010000 101
0001000 110
0000100 100
0000010 010
0000001 001

Figure 10.13 The complete syndrome table for all possible single error patterns.
r which is referred to as the syndrome vector s:
s=Hr=H(c®e)
=Hc®PHe=0®PHe (10.11)

Thus s is easily calculated and, if there are no received errors, the syndrome will be the
all-zero vector 0. Calculating the vector s provides immediate access to the vector e and
hence the position of the errors. A syndrome table is constructed by assuming
transmission of all the zeros codeword and calculating the syndrome vector associated
with each correctable error pattern:

-0 -
0
10111001[0 0
11010101{[0| =10 (10.12)
1110001140 0
0
Lo

Equation 10.12 illustrates the case of no errors in the received sequence leading to the ail
zeros syndrome for the earlier (7,4) code example. Figure 10.13 shows the full syndrome
table for this (7,4) code. In this case only single errors are correctable and the syndrome
table closely resembles the transposed matrix H”. If a double error occurs then it will
normally give the same syndrome as some single error and, since single errors are much
more likely than double errors, a single error will be assumed and the wrong codeword
will be output from the decoder resulting in a ‘sequence’ error. This syndrome decoding
technique is still a nearest neighbour (maximum likelihood) decoding strategy.

EXAMPLE 10.3
As an example of the syndrome decoding technique, assume that the received vector for the (7,4)
code is r = 1001101 and find the correct transmitted codeword.

346 Error control coding

1101010

1

0
101110010
1
1110001 1
0

1

The above matrix equation illustrates calculation of the corresponding syndrome (100). Reference
to the syndrome table (Figure 10.13) reveals the corresponding error pattern as (0000100). Finally
c=r®e

r= 1001101

e 0000100

¢c= 1001001

to give the corrected transmitted codeword ¢ as 1001001.

EXAMPLE 10.4
For a (6, 3) systematic linear block code, the codeword comprises I, /, I3 P, P, P; where the three

parity-check bits P, P, and P, are formed from the information bits as follows:

Pr=1®1
P,=1®1L
P3:]2®]3

Find: (a) the parity check matrix; (b) the generator matrix; (c) all possible codewords. Determine
(d) the minimum weight; (¢) the minimum distance; and (f) the error detecting and correcting
capability of this code. (g) If the received sequence is 101000, calculate the syndrome and decode
the received sequence.

(a) -
(110100
H=/101010
1011001
(b))]
100110
G=]1010101
1001011 |
(c) and (d)
Message X G = Codeword Weight
[000]xG = 000000 0
[0011xXG = 001011 3
[0101xG = 010101 3
[100IxG = 100110 3
[011]IxG = 011110 4

Syndrome decoding 347

[101IxG = 101101 4
[110]xG = 110011 4
[1111xG = 111000 3

Minimum weight = 3.

(e) D, = minimum weight = 3.

(f) The code is thus single error correcting (or double error detecting if no correction is required).
(g) Now using H r = s, equation (10.11) becomes:

o
110100 (]) 1
s=|101010 0 =10
011001 1

0

o |

The decoded codeword could be found by constructing the syndromes for all possible error patterns
and modulo-2 adding the appropriate error pattern to the received bit pattern. It is clear, however,
that the decoded codeword is [1 1 1 O O O] as this is the closest valid codeword to the received bit

pattern.

10.8 Cyclic codes

Cyclic codes are a subclass of group codes which do not possess the all-zeros codeword.
The Hamming code is an cxamplc of a cyclic code. Their propertics and advantages are
as follows:

* Their mathematical structure permits higher order correcting codes.

» Their code structures can be easily implemented in hardware by using simple shift

registers and exclusive-or gates.
* Cyclic code members are all lateral, or cyclical, shifts of one another.
* Cyclic codes can be represented as, and derived using, polynomials.

The third property, listed above, can be expressed as follows. If:

C=U,IhL- 1) (10.13)
then:

Ci = U I 11, I, 1) (10.14)
(C; is an i bit cyclic shift of C, and Iy, --, I, now represents both parity and information
bits.) The following three codewords provide an example:

1001011

0101110

0010111

348 Error control coding

Full description of these codes requires a detailed discussion of group and field theory
and takes us into a discussion of prime numbers and Galois fields. Non-systematic cyclic
codes are obtained by multiplying the data vector by a generator polynomial with modulo
arithmetic. In general cyclical codes are generated from parity-check matrices which
have cyclically related rows.

Cyclic codes encompass BCH codes and the Reed-Solomon non-binary codes. The
Reed-Solomon (RS) code is made up of n symbols where each symbol is m bits long. m
can be any length depending on the application, for example if m = 8 bits then each
symbol would represent a byte. Thus RS codes operate on a multiple bit symbol
principle and not a bit principle as other cyclic codes do. An important property of the
RS codes is their burst error correction property. Their error correcting power is:

n—k 10.15
= (10.15)
where n and k here relate to encoded symbols, not bits. For example the (31,15) Reed-
Solomon code has 31 5-bit encoded symbols which represent 15 symbols of input
information or 75 input information bits. This can correct 8 independent bit errors or 4
bursts of length equal to or less than the 5-bit symbol duration.

10.8.1 Polynomial codeword generation

Systematic cyclic redundancy checks (CRC) are in widespread use for performing error
detection, but not correction, on bit-serial channels. The operation of CRCs can be
considered as an algebraic system in which O and 1 are the only values and where
addition and subtraction involve no carry operations (i.e. arithmetic is modulo-2).
(Addition and subtraction are both, therefore, the same as the logical exclusive-or
operation.) If a message of length k bits: my_y,- - -, m;, my (from most to least significant
bit) is to be transmitted over a channel then, for coding purposes, it may be considered to
represent a polynomial of order k —1:

M(x) = m x* Vo v myx +my (10.16)

The message M(x) is modified by the generator polynomial P(x) to form the channel
coded version of M(x). This is accomplished by multiplying, or bit shifting, M(x) by the
order of P(x). P(x) is then divided into the bit shifted or extended version of M(x) and
the remainder is then appended to M (x) replacing the zeros which were previously added
by the bit shifting operation. Note that the quotient is discarded.

EXAMPLE 10.5
Generate a polynomial codeword from the data sequence 1001 and the generator polynomial

1+ x+x%,

Cyclic codes 349

11
1101 11001000
-1101
100000
-1101
10100
~1101
1110
-1101

011
Figure 10.14 Long division calculation of remainder for appending to data to obtain codeword.

For M(x) = 1001 (i.e. I + x°) and the polynomial P(x) = 1101 (i.e. 14 x + x%) the bit shifted
sequence kM (x) is 1001000. This is now divided by P(x), Figure 10.14, to obtain the remainder
011. The appended zeros in kM(x) are then replaced by the remainder to realise the transmitted
codeword as 1001011.

The required division process can be conveniently implemented in hardware. An
encoding circuit, which is equivalent to the long division operation of Figure 10.14, is
shown in Figure 10.15. The encoding circuit works as follows. The information bits are
transmitted as part of the cyclic code but are also fed back via the feedback loop. During
this step, the feedback switch is kept closed. As we clock the shift register and input the

message codeword the states A, - - -, E in the shift register follow this bit pattern:
Input A = 1001
B = 1010
previous B, i.e. C = 0101
D = 1111
previous D, i.e. E = 0111
previous E,i.e. F = 0011
Switch
B
F
ROy TRy By
Delay Modulo-2 Parity bits
adder ©011)
» Transmitter
{ p— (encoded)
Message bits b data
(1001) A Switch (down
for first 4 bits)

Figure 10.15 Encoder for a (7,4) cyclic code generated by P(x) = 1 + x + x°.

350 Error control coding

When the final bit of information is transmitted, the gate in the feedback loop is opened
and the information remaining at the shift register locations E, D, B is then appended to
the data for transmission using the output switch. These remaining parity check bits, in
this example, would be 110, resulting in the (7,4) Hamming code.

On reception the received data is again divided by P(x) and if the remainder is zero
then no errors have been introduced. Further examination of a non-zero remainder in a
syndrome table can allow the bit error positions to be determined and the errors corrected
by adding in the error pattern in the decoder [Blahut 1983], as previously shown in
Example 10.3. The syndrome table can be found either by mathematical manipulation or
by successive division for each error location.

The hardware decoding scheme, see Figure 10.16, is basically an inverse version of
the encoding scheme of Figure 10.15. If the decoder receives an error it is capable of
identifying the position of the error digit via the remainder and the syndrome table.

Thus, the polynomial coded message consists of the original k¥ message bits, followed
by n — k additional bits. The generator polynomial is caretully chosen so that almost all
errors will be detected. Using a generator of degree k allows the detection of all burst
errors affecting up to k consecutive bits. The generator chosen by ITU-T for the V.41
standard, which is the same as that used extensively on wide area networks, is:

M) = X"+ x2 4+ +1 (10.17)
The generator chosen by IEEE, used extensively on local area and FDDI networks (see
Chapter 18), is:

M()c)=)c32+x26+)c23+x22+x1€'+x12+xll e P P P RS
(10.18)
CRC six-bit codewords are transmitted within the plesiochronous multiplex, Chapter 19,
to improve the robustness of frame alignment words. The error correcting power of the
CRC code is low and it is mainly used when ARQ retransmission is deployed, rather than

Gate
Received
data
- ® To > \ey Tu Tu
Syndrome Y

Syndrome table lookup for error pattern determination —

Corrected
output

Shift
register

Figure 10.16 Syndrome calculator and decoder for a (7,4) cyclic code.

;
;

Cyclic codes 351

for error correction itself.

10.8.2 Interleaving

The largest application area of block codes is in compact disc players which employ a
powerful concatenated and cross-interleaved Reed-Solomon coding scheme to handle
random and burst errors. Partitioning data into blocks and then splitting the blocks and
interleaving them means that a burst transmission error usually degrades only part of each
original block. Thus, using FECC, it is possible to correct for a long error burst, which
might have destroyed all the information in the original block, at the expense of the delay
required for the interleaver encoder/decoder function. In other applications bit-by-bit
interleaving is employed to spread burst errors across a data block prior to decoding.
Figure 10.17 shows how an input data stream is read, column by column, into a
temporary array and then read out, row by row, to achieve the bit interleaving operation.
Now, for example, a burst of three errors in the consecutive transmitted data bits,
1,, Is, Iq, is converted into isolated single errors in the de-interleaved data.

10.9 Encoding of convolutional codes

Convolutional codes are generated by passing a data sequence through a shift register
which has two or more sets of register taps (effectively representing two or more different
filters) each set terminating in a modulo-2 adder. The code output is then produced by
sampling the output of all the modulo-2 adders once per shift register clock period. The
coder output is obtained by the convolution of the input sequence with the impulse
response of the coder, hence the name convolutional code. Convolution applies even
though there are exclusive or and switch operations rather than multiplies. Figure 10.18

Input data

Voo Iy Iy Iy Ig Is I 1y Iy Iif—-

hilL |

Interleaving Lol | ho

memory Bl 5| ee
L

el I Dy Ly I Iy Iy Iy Is Iy f—>

Output (interleaved) data for transmission

Figure 10.17 Data block interleaving to overcome burst errors.

352 Error control coding

illustrates this with a simple example where the output encoder operation can be defined
by two generator polynomials. The first and second encoded outputs, P((x), P,(x), can
be defined by P(x)=1 +x% and P,(x)=1+x, as in Example 10.5. This shows a
3-stage encoder giving a constraint length n = 3. The error correcting power is related to
the constraint length, increasing with longer lengths of shift register.

Assume the data sequence 1101 is input to the three-stage shift register which is
initiated or flushed with zeros prior to clocking the sequence through. This example
depicts a rate %2 coder (R = '2) since there are two output digits for every input
information digit. The coder is non-systematic since the data digits are not explicitly
present in the transmitted data stream. The first output following a given input is
obtained with the switch in its first position and the second output is obtained with the
switch in its second position, etc.

This encoder may be regarded as a finite state machine. The first stage of the shift
register holds the next input sample and its contents determine the transition to the next
state. The final two stages of the shift register hold past inputs and may be regarded as
determining the ‘memory’ of the machine. In this example there are 2 ‘memory stages’

TInput 1 1 01
Output 11101101

Figure 10.18 A simple example of a rate s convolutional encoder.

00D

Output
00 B

Input nE

A K
— 10 h
01F

10G

Figure 10.19 Tree diagram representation of the coder in Figure 1 0.18.

Encoding of convolutional codes 353

and hence four possible states. In general an n-stage register would have 207D gtates.
For the n = 3 stage coder the four states correspond to the data bit pairs 00, 10, 01, 11
(from prior input data). The convolutional encoder operation may be represented by a
tree diagram.

10.9.1 Tree diagram representation

Figure 10.19 depicts the tree diagram corresponding to the example of Figure 10.18.
Assume that the encodcr is ‘flushed’ with zeros prior to the first input of data and that it is
in an initial state which is labelled A. Conventionally the tree diagram is drawn so that
inputting a zero results in exiting the present state by the upper path, while inputting a
one causes it to exit by the lower path. Assuming a zero is input, the machine will move
to state B and output 00. Outputs are shown on the corresponding branches of the
diagram. Alternatively if the machine is in state A and a 1 is input then it proceeds to
state C via the lower branch and 11 is output. Figure 10.19 depicts the first three stages
of the tree diagram, after which there appear to be eight possible states. This is at
variance with the previous statement, that the state machine in this example has only four
states.

There are, in fact, only four distinct states here, (00, 10, O1, 11), but each state
appears twice. Thus H is equivalent to h, for example. This duplication of states results
from identical prior data bits being stored in the shift register of the encoder, The path
B, D to H represents the input of two zeros, as does the path C, F to h, resulting in
identical data being stored in the shift register. After the fourth stage each state would
appear four times, etc. Two states are identical if, on receiving the same input, they
respond with the same output. Following through input data in Figure 10.19 by the path
which this data generates allows the states (00, 10, 01, 11) to be identified and the figure
annotated accordingly to identify the redundancy. The apparent exponential growth rate
in the number of states can be contained by identifying the identical states and overlaying
them. This leads to a trellis diagram.

10.9.2 Trellis diagram

Figure 10.20 shows the trellis diagram corresponding to the tree diagram of Figure 10.19.
The horizontal axis represents time while the states are arranged vertically. On the arrival
of each new bit the tree diagram is extended to the right. Here five stages are shown with
the folding of corresponding tree diagram states being evident at the fourth and fifth
stages (states HIJK, LMNO) by the presence of two entry paths to each state. There are
still too many states here and inspection will show that H and L, for example, are
equivalent. Thus four unique states may be identified. These are labelled a, b, ¢ and d
on this diagram again corresponding to the binary data 00, 10, 01, and 11 being stored in
the final two stages of the shift register of Figure 10.18.

The performance of the convolutional coder is basically dependent on the Hamming
distancc between the valid paths through the trellis, corresponding to all the possible,
valid, data bit patterns which can occur. The final step in compacting the graphical

354 Error control coding

Figure 10.20 Trellis diagram representation of the coder in Figure 10.18.

representation of the convolutional encoder is to reduce this trellis diagram to a state
transition diagram.

10.9.3 State transition diagram

Here the input to the encoder is shown on the appropriate branch and the corresponding
outputs are shown in brackets beside the input, Figure 10.21. For example if the encoder
is in state a (the starting state) and a zero is input then the transition is along the self-loop
returning to state a. The corresponding output is 00, as shown inside the brackets (and
along the top line of Figure 10.20). If, on the other hand, a 1 is input while in state q,
then 11 is output and the state transition is along the branch from a to b, etc.

10.10 Viterbi decoding of convolutional codes

There are three main types of decoder. These are based on sequential, threshold (majority
logic) and Viterbi decoding techniques. The Viterbi technique is by far the most popular.

Data encoded by modern convolutional coders are usually divided into message
blocks for decoding, but unlike the block coded messages, where n <255, the
convolutional coded message typically ranges from 500 to >10,000 bits, depending on the
application. This makes decoding of convolutional codes potentially onerous. (The
decoder memory requirements grow with message length.) The coder operation is

Figure 10.21 State transition diagram representation of the coder in Figure 1 0.18.

Viterbi decoding of convolutional codes 355

illustrated here by the processing of short fixed length blocks, which are fed through the
encoder after it has been ‘flushed’ with zeros to bring it into state a. The block of data is
followed with trailing zeros to return the encoder back to state a at the end of the coding
cycle. This simplifies decoding and ‘flushes’ the encoder ready for the next block. The
zeros do not, however, carry any information and the efficiency, or rate, of the code is
consequently reduced.

Secondly, the Viterbi decoding algorithm is used at each stage of progression through
the decoding trellis, retaining only the most likely path to a given node and rejecting all
other possible paths on the grounds that their Hamming distance is larger and that they
are, thus, less likely events than that represented by the shorter distance path. This leads
to a linear increase in storage requirement with block length as opposed to an exponential
increase.

The Viterbi decoding algorithm implements a nearest neighbour decoding strategy. It
picks the path through the decoding trellis, which assumes the minimum number of errors
(the probability of ¢ errors being much greater than that of r+1 errors, etc.).
Conceptually a decoding trellis, similar to the corresponding encoding trellis, is used for
decoding.

EXAMPLE 10.6 — Decoding trellis construction
Assume a received data sequence 1010001010 for the encoder operation of Figure 10.18. Identify
the errors and derive the corresponding transmitted data sequence.

The ten transmitted binary digits correspond to five information digits. We assume that the first
three of these digits are unknown data and the last two are flushing zeros.

Decoding begins by building a decoding trellis corresponding to the encoding trellis starting at
state A as shown in Figure 10.22. We assume that the first input to the encoder is a zero. Reference
to the encoding trellis indicates that on entering a zero with the encoder completely flushed 00
would be output, but 10 has been received. This means that the received sequence is a Hamming
distance of 1 from the possible transmitted sequence (with an error in the first output bit). This
distance metric is noted along the upper branch from A to B.

The possibility that the input data may have been a 1 is now investigated. Again, reference to
the encoding trellis indicates that if a 1 is input to the encoder in state A, the encoder will output 11
and follow the lower path to state C. In fact, 10 was received, so again, the actual received
sequence is a Hamming distance of 1 from this possible transmitted sequence. (Here the error

o
S
-]

Received 1 0

Figure 10.22 First stage in constructing the decoding trellis for a received sequence from the
encoder of Figure 10.18 after receiving two encoded data bits.

356 Error control coding

would be in the second bit.) The distance metric is thus noted as 1 along the branch from A to C.

Now we teturn to state B and assume that the input was zero followed by another zero. If this
were the case, the encoder would have gone from state B to state D and output 00 (Figure 10.23).
The third and fourth digits reccived, however, were 10 and again there is a Hamming distance of 1
between the received sequence and this possible transmitted sequence. This distance metric is
noted on the branch B to D and a similar operation is performed on branch B to E where the
distance is also 1. Next we consider inputting zero while in state C. This would create 01 whilst,
in fact, 10 was received. The Hamming distance here is 2. This metric is noted on branch C to F
and attention is turned finally to branch C to G. Starting in state C and inputting a 1 would have
output 10 and, in fact, 10 was received, so at last there is a received pair of digits which does not
imply any errors. The cumulative distances along the various paths, i.e. the path metrics, are now
entered in square brackets above the final states in Figure 10.23.

Figure 10.24 illustrates a further problem. Decoding is now at stage 3 in the decoding trellis
and the possibility of being in state J is being considered. From this stage on, each of the four
states in this example has two entry, and two exit, paths. Conventionally on reaching a state like J
with two input paths, the cumulative Hamming distance or path metric of the upper route (ABEJ) is
shown first and the cumulative Hamming distance for the lower path (ACGJ) is shown second in
the square brackets adjacent to state J. The real power of the Viterbi algorithm lies in its rejection
of one of those two paths, retaining one path which is referred to as the ‘survivor’. If the two paths
have different Hamming distances then, since this is a nearest neighbour (maximum likelihood)
decoding strategy, the path with the larger Hamming distance is rejected and the path with the
smaller Hamming distance, or path metric, is carried forward as the survivor.

In the case illustrated in Figure 10.24 the distances are identical and the decoder must flag an
uncorrectable error sequence, if using incomplete decoding. If using complete decoding a random
choice is made between the two paths (bearing in mind there is a 50% probability of being wrong).
Fortunately, this situation is rare in practice. (The probability of error has been deliberately
increased here for illustrative purposes.)

There are two paths to state H with path metrics {2,4], Figure 10.25. The path of distance 4
may thus be rejected as being less likely than the path of distance 2, etc. To state / there are also
two paths of equal length [4,4]. In the final stage state P has been labelled as being the finishing
point of the decoding process since in this example only three unknown data digits are being
transmitted followed by 00 to flush the encoder and bring the decoder back to state a. Only the

m (2
B D

Received

Received

Stage 1 Stage 2
Figure 10.23 Second stage of trellis of Figure 1 0.18 after decoding four data bits.

Viterbi decoding of convolutional codes 357

Figure 10.24 lllustration of a sequence containing a detectable but uncorrectable error pattern.

Start [1] 2] 241 [3,3] [4.2]

[4.4]

[5.3]

{33

{11 [1.3] 4.2

Figure 10.25 Complete decoding trellis for Example 10.6 with the dashed preferred path and
resulting decoded sequence 11100.

more likely of the two paths to state P is retained. This is the lower path with a Hamming distance
of 2. Note that although state O also has distances of 2 we cannot progress from O to P to
complete the decoding operation. Figure 10.25 shows the complete decoding trellis. Tracing back
along the most likely (dashed) path provides the corresponding decoded sequence as (11100) and
the implied correct received data as 1110001110. Although state O also has a cumulative distance
of 2 this cannot terminate the correct path as this decoder must be flushed with zeros ready for the
next block of data.

10.10.1 Decoding window

In a practical convolutional decoder the block length would usually be very much larger
than in the simple example above. The data from a complete frame of a video coded
image, Chapter 16, may be sent as a single message block, for example. In such a case
the overhead requirement, for accommodating the flushing zeros, becomes negligible.
There is a constraint on the length of data which can be retained in the decodcr memory,
however, when performing the Viterbi decoding operation. The practical limitation is

358 Error control coding

2]

12}
(31
(1]
(b
3,3] ——neep———t (4.2
f / [4.2]
[3] ¢ o// .
2] . . /,J .
2] —-v" e e
2 3 4 5
© @

Figure 10.26 Viterbi decoding within a finite length decoding window.

known as the decoding window. In a practical decoder the ncw distance metrics are
added to the previous path metrics to obtain updated path metrics. Details of the paths,
which correspond to these various distances, are carried forward in the decoding process.
In Figure 10.25 the decoding was performed over a window length of 5 input data bits.
(With long block lengths the same procedure would be followed.) Figure 10.26 shows an
example of decoding with a window length of only 4. This demonstrates how the
decoding of Figures 10.22 to 10.25 moves through the window (sequence (a) to (d)) with
only the most likely paths being retained.

When the window length is restricted to 4 then, on the arrival of the final received bit
pair, it is no longer possible to continue to examine the start bit as this would have
propagated out of the restricted length of the decoding window (through which the trellis
is viewed). The window length should be long enough to cover all bursts of decoding
errors but, since longer lengths involve more computation, a compromise must be made
and the decoder’s performance verified by computer simulation. (For practical coders a
good rule of thumb is for the decoding window to be set at five times the constraint length

of the encoder.)
10.10.2 Sequential decoding

Viterbi’s algorithm requires all the surviving sequences to be followed throughout the
decoding process and leads to excessive memory requirements for long constraint
lengths. Complexity can be reduced by sequential decoding, which directly constructs
the sequence of states by performing a distance measure at each step. Sequential
decoding proceeds forwards until complete decoding is accomplished or the cumulative
distance exceeds a preset threshold. When this occurs the algorithin backtracks and

Viterbi decoding of convolutional codes 359

selects an alternative path until a satisfactory overall distance is maintained. This works
well at low error rates but, when the error rate is high, the number of backward steps can
become very large.

The Viterbi decoder has three main components, Figure 10.27. The first is the branch
metric value (BMV) calculation unit which finds the Hamming distances for each new
branch in the trellis. The add-compare-select unit is the second which calculates and
updates the overall path history or path metric values (PMVs) for each path arriving at
each node in the trellis. In the third component, the output determination unit, only the
surviving paths are retained (i.e. selected) as these have the smallest distances, the paths
with higher distances being discarded. When working through the complete trellis, only
the most likely overall path is finally retained as the ultimate survivor. Trellis decoding is
not restricted to convolutional codes as it is also used for soft decision decoding of block
codes [Honary and Markarian]. (A similar decoding trellis is also used later for trellis
coded modulation, section 11.4.8 [Biglieri ef al., Ungerboeck].)

10.11 Practical coders

Examples of practical block codes are the BCH (127, 64) which has an error correction
capability of ¢ = 10 bit; the Reed-Solomon (16,8) or (64,32) codes achieve ¢ = 4 symbol
capability while the shorter block length of the Golay (23,12) code has a ¢t =3 bit
capability. The error rate performance of these, and some other, codes is compared in
Figure 10.28 (Farrell], all for DPSK modulation, in which the horizontal axis is energy
per input information data bit divided by one sided noise power spectral density Ej,/No.
Figure 10.28 echoes Figure 10.1, showing clearly the point at which the FECC systems
outperform uncoded differential phase shift keyed (DPSK) transmission (see Chapter 11).

PMYV and path history bus
BMV,
> Add
BMV, Compare [
hakNg
> Select
BMV,
| By BMV Co[r\r?;are
0
BMV |—» 1 Select PMV Output
— > calculation |BMVi BMYV, normalisation determination |——>"
Input unit BMV, Add > unit unit Output
> BMV, Compare
BMVs Select
BMV,
Add
BMV, Compare [
Select

Figure 10.27 Viterbi decoder circuit for decoding the trellis of Figure 10.20.

360 Error control coding

Generally for a = 1 BCH block code, which has a larger block length than the
simple Hamming (7,4) example, i.e. a (31,26) or a (63,57) code, then the coding gain over
the uncoded system, at a P, of 107, is >2 dB. For the longer ¢ = 3 bit BCH (127,106)
code the coding gain approaches 4 dB. Linear block codes are usually restricted to
n <255 by the decoder complexity. In Figure 10.28 the ¢+ = 4 symbol Reed-Solomon
code is inferior to ¢ = 3 bit Golay code at high P, but this performance is reversed at
lower P,. The (23,12) Golay code, which corrects triple errors, is a perfect code as
equation (10.4) becomes:

223
212 < (10.19(a))

- 23CO + 23Cl + 23C2 + 23C3

i.e.:

223
212 < (10.19(b))

1+23+253+1771

and hence is satisfied as the equality:

23 23

2 27 2

2048 21

In general Reed-Solomon codes are attractive for bursty error channels where extremely
low P, values (e.g. 107'°) are required. Convolutional codes are favoured for Gaussian

noise channels where more moderate P, values (e.g. 107°) are required.
Practical convolution codes often have constraint lengths of n = 7 with a rate /4 coder
which employs 7 delay stages. This requires a decoding window in the trellis of 35 to

(10.20)

10 f
DPSK convolutional
n=T,R=17
o2 Viterbi decoding
1 Hamming (7,4) t=1
co_m;(z]lutlonal Golay (23,12) t=3
P[n= y
) R=172 RS (16, 8)
1073 sequential t=4=(64,32)
decoding BCH (127, 64y r= 10
107 -
107
I I
0 1 2 3 45 6 7 8 910

Ey/Ny (dB)

Figure 10.28 Performance of rate ': codes for DPSK signals in AWGN with hard decision
decoding (source: Farrell, 1989, reproduced with permission of the IEE).

Practical coders 361

achieve the theoretical coding gain. With such a window, the encoder message block size
can be set appropriate to the specific application. Such a coder then has Dy, = 10 and its
performance is equivalent to the BCH (127,64) block code. The convolutional coder is
preferred, however, because the encoder is simpler and the decoder can more easily
incorporate soft decision techniques (in which a confidence level is retained for the
received data). Such soft decisions, which implement maximum likelihood decoding,
give approximately 2 dB improvement in coding gain compared to hard decisions. (The
Voyager space probes employed soft decision decoders adding 5 to 8 dB coding gain to
their link budget, see Chapter 12.)

In general reducing the efficiency, or rate, R, of the coder increases the Hamming
distance D, between permissible paths and improves the error correcting power (i.e. the
coding gain in dB compared to the uncoded DPSK system). If the performance is
normalised by the rate R then there may be little benefit in going to rates of less than 2 as
the improvement in error rate is exactly balanced by the reduction in data rate. Whilst
additional coding gain improvement is typically 1 dB for an n = 9 constraint length,
compared to n = 7, the improvements beyond this are very small and the decoder
complexity is excessively high.

The largest application area for convolutional coders is in rate ¥ compact disc codes
which employ a concatenated and cross-interleaved coding scheme. Sequential decoding
is a powerful search path technique for use in the decoding trellis, especially with longer
constraint length, Figure 10.28. Sophisticated VLSI Viterbi decoders are now available
for speeds of 250 kbit/s to 25 Mbit/s with constraint lengths of n = 7 at (1996) costs of
£10 and above, per FECC decoder. Table 10.2, lists some Qualcom (Q) and Stanford
Telecom (ST) convolutional coder chipsets.

Table 10.2 Examples of commercially available convolutional coder chipsets.

Data rate (Mbit/s) 25 12 2.5 1 7]

Coder et R TIIT (32173111 T[73217T
’ 8'4°2°3 | 4°3°2 | 842’3 | 2°3 | 84323

Constraint length 7 7 7 6 6-7

Soft decision capability (bits) 3 3 3 - 34

Supplier Q Q/ST Q ST Q/ST

10.12 Summary

Error rate control is necessary for many systems to ensure that the probability of bit error
is acceptably low. Bit error rates may be reduced by increasing transmitted power,
applying various forms of diversity, using echo back and retransmission, employing
ARQ, or incorporating FECC. In this chapter the focus has been on channel coding for
error detection and correction which are prerequisites, respectively, for ARQ and FECC
error control systems.

362 Error control coding

Channel codes may be systematic or unsystematic. Systematic codes use codewords
which contain the information digits, from which the codeword is derived, explicitly. The
rate, R, of a code is the ratio of information bits transmitted to total bits transmitted. The
Hamming distance between a pair of binary codewords, which is given by their modulo-2
sum, is a measure of how easily one codeword can be transformed into the other. The
weight of a binary code word is equal to the number of binary ones which it contains.

Block codes divide the precoded data into k bit lengths and add (n — k) parity check
bits to create a post-coded block, with length n bits. An (n, k) block code, therefore, has
an efficiency, or rate, of R =k/n. Single parity check codes are block codes which
append a single digital one, or zero, to each codeword in order to ensure that all
codewords have either an even (for even parity) or an odd (for odd parity) weight. This
allows single error detection. Data can also be arranged in two dimensional, rectangular,
arrays allowing parity check digits to be added to the ends of rows, and the bottoms of
columns. This achieves single error correction.

Group codes (also called linear block codes) are block codes which contain the all-
zeros codeword and have the closed set, or linear group, property, i.e. the modulo-2 sum
of any pair of valid codewords in the set is another valid codeword. The error correcting
power, ¢, of a linear group code is given by int((D,,;, — 1)/2) where D, is the minimum
Hamming distance between any pair of codewords. The error detecting power, e, of a
linear group code is given by D, —¢ —1. Group codes are the most important block
codes due to the ease with which their performance can be predicted. (D, is given by
the weight of the minimum weight codeword, excluding the all-zeros codeword, in the
group). Block codes can be generated using a generator matrix. Complete codewords are
generated by the product of the precoded data vector with the generator matrix.

Block codes are most easily decoded using a nearest neighbour strategy. This is
equivalent to maximum likelihood decoding providing that P(¢ errors)> P(t + 1 errors)
which is always the case in practice. Nearest neighbour decoding can be implemented
using a nearest neighbour table or a syndrome table. (The syndrome vector for a given
received codeword is the product of the parity check matrix and the received codeword
vector. It is also the product of the parity check matrix and the error pattern vector of the
received codeword allowing error patterns to be determined from a table of syndromes.)
Syndrome decoding is advantageous when block size is large since the syndrome table
for all (single) error patterns is much smaller than the nearest neighbour decoding table.

Cyclic codes are linear group codes in which the codeword set consists of only, and
all, cyclical shifts of any one member of the codeword set. They are particularly easily
generated using shift registers with appropriate feedback connections. Their syndromes
are also easily calculated using shift register hardware. CRC codes are systematic cyclic
codes which are potentially capable of error correction but are often used for error
detection only. A polynomial representation of a precoded block of information bits is
multiplied (i.e. bit shifted) by the order of a generator polynomial and then divided by the
generator polynomial. The remainder of the division process is appended to the block of
information bits to form the complete codeword. Division of received codeword
polynomials by the generator polynomial leaves zero remainder in the absence of errors.

Summary 363

Convolution codes are unsystematic and operate on long data blocks. The encoding
operation can be described (in increasing order of economy) using tree, trellis or state
diagrams. The Viterbi algorithm, which implements a nearest neighbour decoding
strategy, is usually used to decode convolution codes. The error correction capability of
convolutional coders is not inherently in excess of that for block coders but their decoder
and, particularly, encoder designs are simpler.

FECC combinations of block and convolutional codes are widely applied to
accommodate random and burst errors which may both arise in communication channels.

10.13 Problems

10.1. Assume a binary channel with independent errors and P, =0.05. Assume k digit symbols
from the source alphabet are encoded using an (n, k) block code which can correct all patterns of
three or fewer errors. Assume r = 20. (a) What is the average number of errors in a block? [1] (b)
Assuming binary transmission at 20,000 binary digits per second, derive the symbol error rate at the
decoder output. [15.8 symbol/s]
10.2. A binary signal is transmitted through a channel which adds zero mean, white, Gaussian
noise. The probability of bit error is 0.001. What is the probability of error in a block of 4 data
bits? If the bandwidth is expanded to accommodate a (7.4) block code, what would be the
probability of an error in a block of 4 data bits? [0.0040, 0.0019]
10.3. Assume a systematic (n, k) block code where n =4, k =2 and the four codewords are 0000,
0101, 1011, 1110. (a) Construct a maximum likelihood decoding table for this code. (b) How
many errors will the code correct? Are there any errors which are detectable but not correctable?
[8 corrected and 8 detected but not corrected] (c) Assume this code is used on a channel with a
P, =0.01. What is the probability of having a detectable error sequence? What is the probability
of having an undetectable error sequence? [0.0388, 0.0006]
10.4. For a (6,3) systematic linear block code, the three parity check digits are:

Py=1x1{®1 x,®1 X1,

P,=1x1®1 x L,®0x1;

Py=0x1®1 x,®1 X1
(a) Construct the generator matrix G for this code. (b) Construct all the possible codewords
generated by this matrix. (c) Determine the error-correcting capabilities for this code. [single] (d)
Prepare a suitable decoding table. (e) Decode the received words 101100, 000110 and 101010.
{111100, 100110, 101011]
10.5. Given a code with the parity check matrix:

1110 100
H =| 1101 010
1011 001

(2) Write down the generator matrix showing clearly how you derive it from H. (b) Derive the
complete weight structure for the above code and find its minimum Hamming distance. How many
errors can this code correct? How many errors can this code detect? Can it be used in correction
and detection modes simultaneously? [3, 1, 2, No] (c) Write down the syndrome table for this code
showing how the table may be derived by consideration of the all-zeros codeword. Also comment

364 Error control coding

on the absence of an all-zeros column from the H matrix. (d) Decode the received sequence
1001110, indicate the most likely error pattern associated with this sequence and give the correct
codeword. Explain the statement ‘most likely error pattern’. [0000010, 1001100]

10.6. When generating a (7,4) cyclic block code using the polynomial 1+ x>+ x*: (a) What would
the generated codewords be for the data sequences 1000 and 10107 [1000101, 1010011] (b) Check
that these codewords would produce a zero syndrome if received without error. (c) Draw a circuit
to generate this code and show how it generates the parity bits for the two data sequences in part
(). (d) If the codeword 1000101 is corrupted to 1001101, i.e. an error occurs in the fourth bit,
what is the syndrome at the receiver? Check this is the same as for the codeword 1010011 being
corrupted to 1011011. [011]

10.7. Given the % rate convolutional encoder defined by P;(x) =1 +x+x? and Py(x)=1 +x2,
and assuming data is fed into the shift register one bit at a time, draw the encoder: (a) tree diagram;
(b) trellis diagram; (c) state transition diagram. (d) State what the rate of the encoder is. (e) Use
the Viterbi decoding algorithm to decode the received block of data, 10001000.

Note: there may be errors in this received vector. Assume that the encoder starts in state a of the
decoding trellis in Figure 10.20 and, after the unknown data digits have been input, the encoder is
driven back to state a with two ‘flushing’ zeros. {0000]

