
CHAPTER 10

Error Detection and Correction

Networks must be able to transfer data from one device to another with acceptable accu
racy. For most applications, a system must guarantee that the data received are identical to
the data transmitted. Any time data are transmitted from one node to the next, they can
become corrupted in passage. Many factors can alter one or more bits of a message. Some
applications require a mechanism for detecting and correcting errors.

Data can be corrupted during transmission.
Some applications require that errors be detected and corrected.

Some applications can tolerate a small level of error. For example, random errors
in audio or video transmissions may be tolerable, but when we transfer text, we expect
a very high level of accuracy.

10.1 INTRODUCTION
Let us first discuss some issues related, directly or indirectly, to error detection and
correcion.

Types of Errors
Whenever bits flow from one point to another, they are subject to unpredictable
changes because of interference. This interference can change the shape of the signal.
In a single-bit error, a 0 is changed to a 1 or a 1 to a O. In a burst error, multiple bits are
changed. For example, a 11100 s burst of impulse noise on a transmission with a data
rate of 1200 bps might change all or some of the12 bits of information.

Single-Bit Error

The term single-bit error means that only 1 bit of a given data unit (such as a byte,
character, or packet) is changed from 1 to 0 or from 0 to 1.
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In a single-bit error, only 1 bit in the data unit has changed.

Figure 10.1 shows the effect of a single-bit error on a data unit. To understand the
impact of the change, imagine that each group of 8 bits is an ASCII character with a 0 bit
added to the left. In Figure 10.1,00000010 (ASCII STX) was sent, meaning start of
text, but 00001010 (ASCII LF) was received, meaning line feed. (For more information
about ASCII code, see Appendix A.)

:Figure 10.1 Single-bit error

ochanged to I

Sent Received

Single-bit errors are the least likely type of error in serial data transmission. To under
stand why, imagine data sent at 1 Mbps. This means that each bit lasts only 1/1,000,000 s,
or 1 )ls. For a single-bit error to occur, the noise must have a duration of only 1 )ls, which
is very rare; noise normally lasts much longer than this.

Burst Error

The term burst error means that 2 or more bits in the data unit have changed from 1 to 0
or from 0 to 1.

A burst error means that 2 or more bits in the data unit have changed.

Figure 10.2 shows the effect of a burst error on a data unit. In this case,
0100010001000011 was sent, but 0101110101100011 was received. Note that a burst
error does not necessarily mean that the errors occur in consecutive bits. The length of
the burst is measured from the first corrupted bit to the last corrupted bit. Some bits in
between may not have been corrupted.

Figure 10.2 Burst error of length 8

Length of burst
error (8 bits)
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A burst error is more likely to occur than a single-bit error. The duration of noise is
normally longer than the duration of 1 bit, which means that when noise affects data, it
affects a set of bits. The number of bits affected depends on the data rate and duration
of noise. For example, if we are sending data at I kbps, a noise of 11100 s can affect
10 bits; if we are sending data at I Mbps, the same noise can affect 10,000 bits.

Redundancy
The central concept in detecting or correcting errors is redundancy. To be able to
detect or correct errors, we need to send some extra bits with our data. These redundant
bits are added by the sender and removed by the receiver. Their presence allows the
receiver to detect or correct corrupted bits.

To detect or correct errors, we need to send extra (redundant) bits with data.

Detection Versus Correction

The correction of errors is more difficult than the detection. In error detection, we are
looking only to see if any error has occurred. The answer is a simple yes or no. We are
not even interested in the number of errors. A single-bit error is the same for us as a
burst error.

In error correction, we need to know the exact number of bits that are corrupted and
more importantly, their location in the message. The number of the errors and the size of
the message are important factors. If we need to correct one single error in an 8-bit data
unit, we need to consider eight possible error locations; if we need to correct two errors
in a data unit of the same size, we need to consider 28 possibilities. You can imagine the
receiver's difficulty in finding 10 errors in a data unit of 1000 bits.

Forward Error Correction Versus Retransmission
There are two main methods of error correction. Forward error correction is the pro
cess in which the receiver tries to guess the message by using redundant bits. This is
possible, as we see later, if the number of errors is small. Correction by retransmission
is a technique in which the receiver detects the occurrence of an error and asks the sender
to resend the message. Resending is repeated until a message arrives that the receiver
believes is error-free (usually, not all errors can be detected).

Coding
Redundancy is achieved through various coding schemes. The sender adds redundant
bits through a process that creates a relationship between the redundant bits and the
actual data bits. The receiver checks the relationships between the two sets of bits to
detect or correct the errors. The ratio of redundant bits to the data bits and the robust
ness of the process are important factors in any coding scheme. Figure 10.3 shows the
general idea of coding.

We can divide coding schemes into two broad categories: block coding and convo
lution coding. In this book, we concentrate on block coding; convolution coding is
more complex and beyond the scope of this book.
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Figure 10.3 The structure ofencoder and decoder

Sender Receiver

Encoder Decoder

~
e8sage I Message I

tcorrect or
discard

l Generator I I Checker I
~ t

[~es~~~~u~~y<;lHl-u.::..:n:.;;.re:.;;.li;,:;ab:.:le:..t::.:ra:.;;.ns:.::Iill.::..:·s;;;;'si;;;;on~~:~:~~~~~~f~~o,~=l

In this book, we concentrate on block codes; we leave convolution codes to advanced texts.

Modular Arithmetic
Before we finish this section, let us briefly discuss a concept basic to computer science
in general and to error detection and correction in particular: modular arithmetic. Our
intent here is not to delve deeply into the mathematics of this topic; we present just
enough information to provide a background to materials discussed in this chapter.

In modular arithmetic, we use only a limited range of integers. We define an upper
limit, called a modulus N. We then use only the integers 0 to N - I, inclusive. This is
modulo-N arithmetic. For example, if the modulus is 12, we use only the integers 0 to
11, inclusive. An example of modulo arithmetic is our clock system. It is based on
modulo-12 arithmetic, substituting the number 12 for O. In a modulo-N system, if a
number is greater than N, it is divided by N and the remainder is the result. If it is neg
ative, as many Ns as needed are added to make it positive. Consider our clock system
again. If we start a job at 11 A.M. and the job takes 5 h, we can say that the job is to be
finished at 16:00 if we are in the military, or we can say that it will be finished at 4 P.M.

(the remainder of 16/12 is 4).

In modulo-N arithmetic, we use only the integers in the range 0 to N - 1, inclusive.

Addition and subtraction in modulo arithmetic are simple. There is no carry when
you add two digits in a column. There is no carry when you subtract one digit from
another in a column.

Modulo-2 Arithmetic

Of particular interest is modulo-2 arithmetic. In this arithmetic, the modulus N is 2. We
can use only 0 and 1. Operations in this arithmetic are very simple. The following
shows how we can add or subtract 2 bits.

Adding:
Subtracting:

0+0=0
0-0=0

0+1=1
0-1=1

1+0=1
1-0=1

1+1=0
1-1=0
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Notice particularly that addition and subtraction give the same results. In this arith
metic we use the XOR (exclusive OR) operation for both addition and subtraction. The
result of an XOR operation is 0 if two bits are the same; the result is I if two bits are
different. Figure 10.4 shows this operation.

Figure 10.4 XORing of two single bits or two words

a. Two bits are the same, the result is O.

loeB1=1 leBO
b. Two bits are different, the result is 1.
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c. Result of XORing two patterns

Other Modulo Arithmetic

We also use, modulo-N arithmetic through the book. The principle is the same; we use
numbers between 0 and N - 1. If the modulus is not 2, addition and subtraction are distinct.
If we get a negative result, we add enough multiples of N to make it positive.

10.2 BLOCK CODING
In block coding, we divide our message into blocks, each of k bits, called datawords. We
add r redundant bits to each block to make the length n = k + r. The resulting n-bit blocks
are called codewords. How the extra r bits is chosen or calculated is something we will
discuss later. For the moment, it is important to know that we have a set of datawords,
each of size k, and a set of codewords, each of size of n. With k bits, we can create a com
bination of 2k datawords; with n bits, we can create a combination of 2n codewords.
Since n > k, the number of possible codewords is larger than the number of possible data
words. The block coding process is one-to-one; the same dataword is always encoded as
the same codeword. This means that we have 2n - 2k codewords that are not used. We
call these codewords invalid or illegal. Figure 10.5 shows the situation.

Figure 10.5 Datawords and codewords in block coding
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Example 10.1

The 4B/5B block coding discussed in Chapter 4 is a good example of this type of coding. In this
coding scheme, k =4 and n =5. As we saw, we have 2k =16 datawords and 2n =32 codewords.
We saw that 16 out of 32 codewords are used for message transfer and the rest are either used for
other purposes or unused.

Error Detection

How can errors be detected by using block coding? If the following two conditions are
met, the receiver can detect a change in the original codeword.

1. The receiver has (or can find) a list of valid codewords.

2. The original codeword has changed to an invalid one.

Figure 10.6 shows the role of block coding in error detection.

Figure 10.6 Process oferror detection in block coding
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The sender creates codewords out of datawords by using a generator that applies the
rules and procedures of encoding (discussed later). Each codeword sent to the receiver may
change during transmission. If the received codeword is the same as one of the valid code
words, the word is accepted; the corresponding dataword is extracted for use. If the received
codeword is not valid, it is discarded. However, if the codeword is corrupted during trans
mission but the received word still matches a valid codeword, the error remains undetected.
This type ofcoding can detect only single errors. Two or more errors may remain undetected.

Example 10.2

Let us assume that k =2 and n = 3. Table 10.1 shows the list of datawords and codewords. Later,
we will see how to derive a codeword from a dataword.

Table 10.1 A code for error detection (Example 10.2)

Datawords Codewords

00 000

01 011

10 101

11 110
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Assume the sender encodes the dataword 01 as 011 and sends it to the receiver. Consider the
following cases:

1. The receiver receives OIl. It is a valid codeword. The receiver extracts the dataword 01
from it.

2. The codeword is corrupted during transmission, and 111 is received (the leftmost bit is cor
rupted). This is not a valid codeword and is discarded.

3. The codeword is corrupted during transmission, and 000 is received (the right two bits are
corrupted). This is a valid codeword. The receiver incorrectly extracts the dataword 00. Two
corrupted bits have made the error undetectable.

An error-detecting code can detect only the types of errors for which it is designed;
other types of errors may remain undetected.

Error Correction

As we said before, error correction is much more difficult than error detection. In error
detection, the receiver needs to know only that the received codeword is invalid; in
error correction the receiver needs to find (or guess) the original codeword sent. We can
say that we need more redundant bits for error correction than for error detection.
Figure 10.7 shows the role of block coding in error correction. We can see that the idea
is the same as error detection but the checker functions are much more complex.

Figure 10.7 Structure of encoder and decoder in error correction
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Example 10.3

Let us add more redundant bits to Example 10.2 to see if the receiver can correct an error without
knowing what was actually sent. We add 3 redundant bits to the 2-bit dataword to make 5-bit
codewords. Again, later we will show how we chose the redundant bits. For the moment let us
concentrate on the error correction concept. Table 10.2 shows the datawords and codewords.

Assume the dataword is 01. The sender consults the table (or uses an algorithm) to create the
codeword 01011. The codeword is corrupted during transmission, and 01001 is received (error in
the second bit from the right). First, the receiver finds that the received codeword is not in the table.
This means an error has occurred. (Detection must come before correction.) The receiver, assuming
that there is only 1 bit corrupted, uses the following strategy to guess the correct dataword.
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Table 10.2 A code for error correction (Example 10.3)

Dataword Codeword

00 00000

01 01011

10 10101

11 11110

I. Comparing the received codeword with the first codeword in the table (01001 versus 00000),
the receiver decides that the first codeword is not the one that was sent because there are two
different bits.

2. By the same reasoning, the original codeword cannot be the third or fourth one in the table.

3. The original codeword must be the second one in the table because this is the only one that
differs from the received codeword by 1 bit. The receiver replaces 01001 with 01011 and
consults the table to find the dataword 01.

Hamming Distance

One of the central concepts in coding for error control is the idea of the Hamming dis
tance. The Hamming distance between two words (of the same size) is the number of
differences between the corresponding bits. We show the Hamming distance between
two words x and y as d(x, y).

The Hamming distance can easily be found if wc apply the XOR operation (ffi) on the
two words and count the number of Is in the result. Note that the Hamming distance is
a value greater than zero.

The Hamming distance between two words is the number
of differences between corresponding bits.

Example 10.4

Let us find the Hamming distance between two pairs of words.

1. The Hamming distance d(OOO, 011) is 2 because 000 ffi 011 is 011 (two Is).

2. The Hamming distance d(10101, 11110) is 3 because 10101 ffi 11110 is 01011 (three Is).

Minimum Hamming Distance

Although the concept of the Hamming distance is the central point in dealing with error
detection and correction codes, the measurement that is used for designing a code is the
minimum Hamming distance. In a set of words, the minimum Hamming distance is the
smallest Hamming distance between all possible pairs. We use dmin to define the mini
mum Hamming distance in a coding scheme. To find this value, we find the Hamming
distances between all words and select the smallest one.

The minimum Hamming distance is the smallest Hamming
distance between all possible pairs in a set of words.
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Example 10.5

Find the minimum Hamming distance of the coding scheme in Table 10.1.

Solution
We first find all Hamming distances.

d(OOO, 011) =2
d(Oll,110)=2

The dmin in this case is 2.

d(OOO, 101) =2
d(W1, 110) =2

d(OaO, 110) = 2 d(Oll, 101) =2

Example 10.6

Find the minimum Hamming distance of the coding scheme in Table 10.2.

Solution
We first find all the Hamming distances.

d(OOOOO, 01011) = 3
d(01011, 10101) =4

The dmin in this case is 3.

d(OOOOO, 10101) =3
d(OlO11, 11110) = 3

d(OOOOO, 11110) = 4
d(10101, 11110) =3

Three Parameters

Before we continue with our discussion, we need to mention that any coding scheme
needs to have at least three parameters: the codeword size n, the dataword size k, and
the minimum Hamming distance dmin. A coding scheme C is written as C(n, k) with a
separate expression for dmin- For example, we can call our first coding scheme C(3, 2)
with dmin =2 and our second coding scheme C(5, 2) with dmin ::= 3.

Hamming Distance and Error

Before we explore the criteria for error detection or correction, let us discuss the relationship
between the Hamming distance and errors occurring during transmission. When a codeword
is corrupted during transmission, the Hamming distance between the sent and received code
words is the number of bits affected by the error. In other words, the Hamming distance
between the received codeword and the sent codeword is the number ofbits that are corrupted
during transmission. For example, if the codeword 00000 is sent and 01101 is received, 3 bits
are in error and the Hamming distance between the two is d(OOOOO, 01101) =3.

Minimum Distance for Error Detection

Now let us find the minimum Hamming distance in a code if we want to be able to detect
up to s errors. If s errors occur during transmission, the Hamming distance between the
sent codeword and received codeword is s. If our code is to detect up to s errors, the mini
mum distance between the valid codes must be s + 1, so that the received codeword does
not match a valid codeword. In other words, if the minimum distance between all valid
codewords is s + 1, the received codeword cannot be erroneously mistaken for another
codeword. The distances are not enough (s + 1) for the receiver to accept it as valid. The
error will be detected. We need to clarify a point here: Although a code with dmin =s + 1
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may be able to detect more than s errors in some special cases, only s or fewer errors are
guaranteed to be detected.

To guarantee the detection of up to s errors in all cases, the minimum
Hamming distance in a block code must be dmin =S + 1.

Example 10.7

The minimum Hamming distance for our first code scheme (Table 10.1) is 2. This code guarantees
detection of only a single error. For example, if the third codeword (l0 1) is sent and one error
occurs, the received codeword does not match any valid codeword. If two errors occur, however,
the received codeword may match a valid codeword and the errors are not detected.

Example 10.8

Our second block code scheme (Table 10.2) has dmin = 3. This code can detect up to two errors.
Again, we see that when any of the valid codewords is sent, two errors create a codeword which
is not in the table of valid codewords. The receiver cannot be fooled. However, some combina
tions of three errors change a valid codeword to another valid codeword. The receiver accepts the
received codeword and the errors are undetected.

We can look at this geometrically. Let us assume that the sent codeword x is at the
center of a circle with radius s. All other received codewords that are created by 1 to s
errors are points inside the circle or on the perimeter of the circle. All other valid code
words must be outside the circle, as shown in Figure 10.8.

Figure 10.8 Geometric concept for finding dmin in error detection
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In Figure 10.8, dmin must be an integer greater than s; that is, dmin =s + 1.

Minimum Distance for Error Correction

Error correction is more complex than error detection; a decision is involved. When a
received codeword is not a valid codeword, the receiver needs to decide which valid
codeword was actually sent. The decision is based on the concept of territory, an exclu
sive area surrounding the codeword. Each valid codeword has its own territory.

We use a geometric approach to define each territory. We assume that each valid
codeword has a circular territory with a radius of t and that the valid codeword is at the
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center. For example, suppose a codeword x is corrupted by t bits or less. Then this cor
rupted codeword is located either inside or on the perimeter of this circle. If the receiver
receives a codeword that belongs to this territory, it decides that the original codeword is
the one at the center. Note that we assume that only up to t errors have occurred; other
wise, the decision is wrong. Figure 10.9 shows this geometric interpretation. Some texts
use a sphere to show the distance between all valid block codes.

Figure 10.9 Geometric concept for finding dmin in error correction
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In Figure 10.9, dmin > 2t; since the next integer increment is 1, we can say that
dmin =2t + 1.

To guarantee correction of up to t errors in all cases, the minimum
Hamming distance in a block code must be dmin == 2t + 1.

Example 10.9

A code scheme has a Hamming distance dmin == 4. What is the error detection and correction
capability of this scheme?

Solution
This code guarantees the detection of up to three errOrs (s == 3), but it can correct up to one error.
In other words, if this code is used for error correction, part of its capability is wasted. Error cor
rection codes need to have an odd minimum distance (3, 5, 7, ... ).

10.3 LINEAR BLOCK CODES
Almost all block codes used today belong to a subset called linear block codes. The use of
nonlinear block codes for error detection and correction is not as widespread because
their structure makes theoretical analysis and implementation difficult. We therefore con
centrate on linear block codes.

The formal definition of linear block codes requires the knowledge of abstract algebra
(particularly Galois fields), which is beyond the scope of this book. We therefore give an
informal definition. For our purposes, a linear block code is a code in which the exclusive
OR (addition modulo-2) of two valid codewords creates another valid codeword.
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In a linear block code, the exclusive OR (XOR) of any
two valid codewords creates another valid codeword.

Example 10.10

Let us see if the two codes we defined in Table 10.1 and Table 10.2 belong to the class of linear
block codes.

1. The scheme in Table 10.1 is a linear block code because the result of XORing any codeword
with any other codeword is a valid codeword. For example, the XORing of the second and
third codewords creates the fourth one.

2. The scheme in Table 10.2 is also a linear block code. We can create all four codewords by
XORing two other codewords.

Minimum Distance for Linear Block Codes

It is simple to find the minimum Hamming distance for a linear block code. The mini
mum Hamming distance is the number of Is in the nonzero valid codeword with the
smallest number of Is.

Example 10.11

In our first code (Table 10.1), the numbers of Is in the nonzero codewords are 2, 2, and 2. So the
minimum Hamming distance is dmin =2. In our second code (Table 10.2), the numbers of Is in
the nonzero codewords are 3, 3, and 4. So in this code we have dmin =3.

Some Linear Block Codes
Let us now show some linear block codes. These codes are trivial because we can easily
find the encoding and decoding algorithms and check their performances.

Simple Parity-Check Code

Perhaps the most familiar error-detecting code is the simple parity-check code. In this
code, a k-bit dataword is changed to an n-bit codeword where n = k + 1. The extra bit,
called the parity bit, is selected to make the total number of Is in the codeword even.
Although some implementations specify an odd number of Is, we discuss the even
case. The minimum Hamming distance for this category is dmin = 2, which means that
the code is a single-bit error-detecting code; it cannot correct any error.

A simple parity-check code is a single-bit error-detecting
code in which n =k + 1 with dmin =2.

Our first code (Table 10.1) is a parity-check code with k -= 2 and n =3. The code in
Table 10.3 is also a parity-check code with k =4 and n =5.

Figure 10.10 shows a possible structure of an encoder (at the sender) and a decoder
(at the receiver).

The encoder uses a generator that takes a copy of a 4-bit dataword (ao, aI' a2' and
a3) and generates a parity bit roo The dataword bits and the parity bit create the 5-bit
codeword. The parity bit that is added makes the number of Is in the codeword even.
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Table 10.3 Simple parity-check code C(5, 4)

Datawords Codewords Datawords Codewords

0000 00000 1000 10001

0001 00011 1001 10010

0010 00101 1010 10100

0011 00110 1011 10111

0100 01001 1100 11000

0101 01010 1101 11011

0110 01100 1110 11101

0111 01111 1111 11110

Figure 10.10 Encoder and decoder for simple parity-check code
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This is normally done by adding the 4 bits of the dataword (modulo-2); the result is the
parity bit. In other words,

If the number of 1s is even, the result is 0; if the number of 1s is odd, the result is 1.
In both cases, the total number of 1s in the codeword is even.

The sender sends the codeword which may be corrupted during transmission. The
receiver receives a 5-bit word. The checker at the receiver does the same thing as the gen
erator in the sender with one exception: The addition is done over all 5 bits. The result,
which is called the syndrome, is just 1 bit. The syndrome is 0 when the number of Is in the
received codeword is even; otherwise, it is 1.
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The syndrome is passed to the decision logic analyzer. If the syndrome is 0, there is
no error in the received codeword; the data portion of the received codeword is accepted
as the dataword; if the syndrome is 1, the data portion of the received codeword is dis
carded. The dataword is not created.

Example 10.12

Let us look at some transmission scenarios. Assume the sender sends the dataword 1011. The code
word created from this dataword is 10111, which is sent to the receiver. We examine five cases:

1. No error occurs; the received codeword is 10111. The syndrome is O. The dataword 1011 is
created.

2. One single-bit error changes aI' The received codeword is 10011. The syndrome is 1. No
dataword is created.

3. One single-bit error changes roo The received codeword is 10110. The syndrome is 1. No data
word is created. Note that although none of the dataword bits are corrupted, no dataword is
created because the code is not sophisticated enough to show the position of the corrupted bit.

4. An error changes ro and a second error changes a3' The received codeword is 00110. The syn
drome is O. The dataword 0011 is created at the receiver. Note that here the dataword is
wrongly created due to the syndrome value. The simple parity-check decoder cannot detect an
even number of errors. The errors cancel each other out and give the syndrome a value of O.

5. Three bits-a3, az, and aI-are changed by errors. The received codeword is 01011. The
syndrome is 1. The dataword is not created. This shows that the simple parity check, guaran
teed to detect one single error, can also find any odd number of errors.

A simple parity-check code can detect an odd number of errors.

A better approach is the two-dimensional parity check. In this method, the data
word is organized in a table (rows and columns). In Figure 10.11, the data to be sent, five
7-bit bytes, are put in separate rows. For each row and each column, 1 parity-check bit is
calculated. The whole table is then sent to the receiver, which finds the syndrome for each
row and each column. As Figure 10.11 shows, the two-dimensional parity check can
detect up to three errors that occur anywhere in the table (arrows point to the locations of
the created nonzero syndromes). However, errors affecting 4 bits may not be detected.

Hamming Codes

Now let us discuss a category of error-correcting codes called Hamming codes. These
codes were originally designed with dmin = 3, which means that they can detect up to two
errors or correct one single error. Although there are some Hamming codes that can cor
rect more than one error, our discussion focuses on the single-bit error-correcting code.

First let us find the relationship between n and k in a Hamming code. We need to
choose an integer m >= 3. The values of nand k are then calculated from mas n = 2m - 1
and k ::: n - m. The number of check bits r =m.

All Hamming codes discussed in this book have dmin = 3.
The relationship between m and n in these codes is n = 2m - 1.

For example, if m =3, then n ::: 7 and k::: 4. This is a Hamming code C(7, 4) with dmin =3.
Table 10.4 shows the datawords and codewords for this code.
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Figure 10.11 Two-dimensional parity-check code
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Table 10.4 Hamming code C(7, 4)

c. Two errors affect two parities

e. Four errors cannot be detected

Datawords Codewords Datawords Codewords

0000 0000000 1000 1000110

0001 0001101 1001 1001011

0010 0010111 1010 1010001

0011 0011010 1011 10111 00

0100 0100011 1100 1100101

0101 01011 10 1101 1101000

0110 0110100 1110 1110010

0111 0111001 1111 1111111
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Figure 10.12 shows the structure of the encoder and decoder for this example.

Figure 10.12 The structure of the encoder and decoder for a Hamming code
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A copy of a 4-bit dataword is fed into the generator that creates three parity checks
ro, rl' and r2' as shown below:

TO=;aZ+al +ao

Tl =a3 + az + al

T2=aI +aO+a3

modulo-2
modulo-2

modulo-2

In other words, each of the parity-check bits handles 3 out of the 4 bits of the data
word. The total number of 1s in each 4-bit combination (3 dataword bits and 1 parity
bit) must be even. We are not saying that these three equations are unique; any three
equations that involve 3 of the 4 bits in the dataword and create independent equations
(a combination of two cannot create the third) are valid.

The checker in the decoder creates a 3-bit syndrome (s2s1s0) in which each bit is
the parity check for 4 out of the 7 bits in the received codeword:

So == bz+ bi + bo+ qo
Sl =b3 + bz+ bI + ql

8Z == bl + bo +b3 +qz

modulo-Z

modulo-2

modulo-2

The equations used by the checker are the same as those used by the generator with
the parity-check bits added to the right-hand side of the equation. The 3-bit syndrome
creates eight different bit patterns (000 to 111) that can represent eight different condi
tions. These conditions define a lack of error or an error in 1 of the 7 bits of the received
codeword, as shown in Table 10.5.
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Table 10.5 Logical decision made by the correction logic analyzer a/the decoder

Syndrome 000 001 010 011 100 101 110 111

Error None % ql b2 q2 bo b3 bl

Note that the generator is not concerned with the four cases shaded in Table 10.5
because there is either no error or an error in the parity bit. In the other four cases, 1 of
the bits must be flipped (changed from 0 to 1 or 1 to 0) to find the correct dataword.

The syndrome values in Table 10.5 are based on the syndrome bit calculations. For
example, if qo is in error, So is the only bit affected; the syndrome, therefore, is 001. If
b2 is in error, So and s1 are the bits affected; the syndrome, therefore is OIl. Similarly, if
b I is in error, all 3 syndrome bits are affected and the syndrome is 111.

There are two points we need to emphasize here. First, if two errors occur during
transmission, the created dataword might not be the right one. Second, if we want to
use the above code for error detection, we need a different design.

Example 10.13

Let us trace the path of three datawords from the sender to the destination:

1. The dataword 0100 becomes the codeword 0100011. The codeword 01 00011 is received.
The syndrome is 000 (no error), the final dataword is 0100.

2. The dataword 0111 becomes the codeword 0111001. The codeword 0011001 is received.
The syndrome is 011. According to Table 10.5, b2 is in error. After flipping b2 (changing the
1 to 0), the final dataword is 0111.

3. The dataword 1101 becomes the codeword 1101000. The codeword 0001000 is received
(two errors). The syndrome is 101, which means that bois in error. After flipping ba, we get
0000, the wrong dataword. This shows that our code cannot correct two errors.

Example 10.14

We need a dataword of at least 7 bits. Calculate values of k and n that satisfy this requirement.

Solution
We need to make k =n - m greater than or equal to 7, or 21n

- 1 - m ~ 7.

1. If we set m =3, the result is n =23 - 1 and k =7 - 3, or 4, which is not acceptable.

2. If we set m =4, then n =24
- 1 =15 and k =15 - 4 =11, which satisfies the condition. So the

code is C(l5, 11). There are methods to make the dataword a specific size, but the discussion
and implementation are beyond the scope of this book.

Performance

A Hamming code can only correct a single error or detect a double error. However,
there is a way to make it detect a burst error, as shown in Figure 10.13.

The key is to split a burst error between several codewords, one error for each
codeword. In data communications, we normally send a packet or a frame of data. To
make the Hamming code respond to a burst error of size N, we need to make N codewords out
of our frame. Then, instead of sending one codeword at a time, we arrange the codewords in a
table and send the bits in the table a column at a time. In Figure 10.13, the bits are sent colunm
by column (from the left). In each column, the bits are sent from the bottom to the top. In this
way, a frame is made out of the four codewords and sent to the receiver. Figure 10.13 shows



284 CHAPTER 10 ERROR DETECTION AND CORRECTION

Figure 10.13 Burst error correction using Hamming code
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that when a burst error of size 4 corrupts the frame, only 1 bit from each codeword is cor
rupted. The corrupted bit in each codeword can then easily be corrected at the receiver.

10.4 CYCLIC CODES
Cyclic codes are special linear block codes with one extra property. In a cyclic code, if
a codeword is cyclically shifted (rotated), the result is another codeword. For example,
if 1011000 is a codeword and we cyclically left-shift, then 0110001 is also a codeword.
In this case, if we call the bits in the first word ao to a6' and the bits in the second word
boto b6, we can shift the bits by using the following:

In the rightmost equation, the last bit of the first word is wrapped around and
becomes the first bit of the second word.

Cyclic Redundancy Check

We can create cyclic codes to correct errors. However, the theoretical background
required is beyond the scope of this book. In this section, we simply discuss a category
of cyclic codes called the cyclic redundancy check (CRC) that is used in networks
such as LANs and WANs.
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Table 10.6 shows an example of a CRC code. We can see both the linear and cyclic
properties of this code.

Table 10.6 A CRC code with C(7, 4)

Dataword Codeword Dataword Code~rord

0000 0000000 1000 1000101

0001 0001011 1001 1001110

0010 0010110 1010 1010011

0011 0011101 1011 1011000

0100 0100111 1100 1100010

0101 0101100 1101 1101001

0110 0110001 1110 1110100

0111 0111010 1111 1111111

Figure 10.14 shows one possible design for the encoder and decoder.

Figure 10.14 CRC encoder and decoder
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000

Encoder

In the encoder, the dataword has k bits (4 here); the codeword has n bits (7 here).
The size of the dataword is augmented by adding n - k (3 here) Os to the right-hand side
of the word. The n-bit result is fed into the generator. The generator uses a divisor of
size n - k + I (4 here), predefined and agreed upon. The generator divides the aug
mented dataword by the divisor (modulo-2 division). The quotient ofthe division is dis
carded; the remainder (r2rl ro) is appended to the dataword to create the codeword.

The decoder receives the possibly corrupted codeword. A copy of all n bits is fed to
the checker which is a replica of the generator. The remainder produced by the checker
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is a syndrome of n - k (3 here) bits, which is fed to the decision logic analyzer. The ana
lyzer has a simple function. If the syndrome bits are all as, the 4 leftmost bits of the
codeword are accepted as the dataword (interpreted as no error); otherwise, the 4 bits
are discarded (error).

Encoder

Let us take a closer look at the encoder. The encoder takes the dataword and augments
it with n - k number of as. It then divides the augmented dataword by the divisor, as
shown in Figure 10.15.

Figure 10.15 Division in CRC encoder
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The process of modulo-2 binary division is the same as the familiar division pro
cess we use for decimal numbers. However, as mentioned at the beginning of the
chapter, in this case addition and subtraction are the same. We use the XOR operation
to do both.

As in decimal division, the process is done step by step. In each step, a copy of the
divisor is XORed with the 4 bits of the dividend. The result of the XOR operation
(remainder) is 3 bits (in this case), which is used for the next step after 1 extra bit is
pulled down to make it 4 bits long. There is one important point we need to remember
in this type of division. If the leftmost bit of the dividend (or the part used in each step)
is 0, the step cannot use the regular divisor; we need to use an all-Os divisor.

When there are no bits left to pull down, we have a result. The 3-bit remainder
forms the check bits (r2' rl' and ro). They are appended to the dataword to create the
codeword.
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Decoder

The codeword can change during transmission. The decoder does the same division
process as the encoder. The remainder of the division is the syndrome. If the syndrome
is all Os, there is no error; the dataword is separated from the received codeword and
accepted. Otherwise, everything is discarded. Figure 10.16 shows two cases: The left
hand figure shows the value of syndrome when no error has occurred; the syndrome is
000. The right-hand part of the figure shows the case in which there is one single error.
The syndrome is not all Os (it is OIl).

Figure 10.16 Division in the CRC decoder for two cases
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You may be wondering how the divisor] 011 is chosen. Later in the chapter we present
some criteria, but in general it involves abstract algebra.

Hardware Implementation
One of the advantages of a cyclic code is that the encoder and decoder can easily and
cheaply be implemented in hardware by using a handful of electronic devices. Also, a
hardware implementation increases the rate of check bit and syndrome bit calculation.
In this section, we try to show, step by step, the process. The section, however, is
optional and does not affect the understanding of the rest of the chapter.

Divisor

Let us first consider the divisor. We need to note the following points:

1. The divisor is repeatedly XORed with part of the dividend.
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2. The divisor has n - k + 1 bits which either are predefined or are all Os. In other
words, the bits do not change from one dataword to another. In our previous exam
ple, the divisor bits were either 1011 or 0000. The choice was based on the leftmost
bit of the part of the augmented data bits that are active in the XOR operation.

3. A close look shows that only n - k bits of the divisor is needed in the XOR operation.
The leftmost bit is not needed because the result of the operation is always 0, no
matter what the value of this bit. The reason is that the inputs to this XOR operation
are either both Os or both 1s. In our previous example, only 3 bits, not 4, is actually
used in the XOR operation.

Using these points, we can make a fixed (hardwired) divisor that can be used for a cyclic
code if we know the divisor pattern. Figure 10.17 shows such a design for our previous
example. We have also shown the XOR devices used for the operation.

Figure 10.17 Hardwired design of the divisor in CRC
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Note that if the leftmost bit of the part of dividend to be used in this step is 1, the
divisor bits (d2d1do) are all; if the leftmost bit is 0, the divisor bits arc 000. The design
provides the right choice based on the leftmost bit.

Augmented Dataword

In our paper-and-pencil division process in Figure 10.15, we show the augmented data
word as fixed in position with the divisor bits shifting to the right, 1 bit in each step.
The divisor bits are aligned with the appropriate part of the augmented dataword. Now
that our divisor is fixed, we need instead to shift the bits of the augmented dataword to the
left (opposite direction) to align the divisor bits with the appropriate part. There is no
need to store the augmented dataword bits.

Remainder

In our previous example, the remainder is 3 bits (n - k bits in general) in length. We can
use three registers (single-bit storage devices) to hold these bits. To find the final
remainder of the division, we need to modify our division process. The following is the
step-by-step process that can be used to simulate the division process in hardware (or
even in software).

1. We assume that the remainder is originally all Os (000 in our example).
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2. At each time click (arrival of 1 bit from an augmented dataword), we repeat the
following two actions:

a. We use the leftmost bit to make a decision about the divisor (011 or 000).

b. The other 2 bits of the remainder and the next bit from the augmented dataword
(total of 3 bits) are XORed with the 3-bit divisor to create the next remainder.

Figure 10.18 shows this simulator, but note that this is not the final design; there will be
more improvements.

Figure 10.18 Simulation ofdivision in CRC encoder
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At each clock tick, shown as different times, one of the bits from the augmented
dataword is used in the XOR process. If we look carefully at the design, we have seven
steps here, while in the paper-and-pencil method we had only four steps. The first three
steps have been added here to make each step equal and to make the design for each step
the same. Steps 1, 2, and 3 push the first 3 bits to the remainder registers; steps 4, 5, 6,
and 7 match the paper-and-pencil design. Note that the values in the remainder register
in steps 4 to 7 exactly match the values in the paper-and-pencil design. The final remain
der is also the same.

The above design is for demonstration purposes only. It needs simplification to be
practical. First, we do not need to keep the intermediate values of the remainder bits;
we need only the final bits. We therefore need only 3 registers instead of 24. After the
XOR operations, we do not need the bit values of the previous remainder. Also, we do
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not need 21 XOR devices; two are enough because the output of an XOR operation in
which one of the bits is 0 is simply the value of the other bit. This other bit can be used
as the output. With these two modifications, the design becomes tremendously simpler
and less expensive, as shown in Figure 10.19.

Figure 10.19 The CRC encoder design using shift registers
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We need, however, to make the registers shift registers. A I-bit shift register holds
a bit for a duration of one clock time. At a time click, the shift register accepts the bit at
its input port, stores the new bit, and displays it on the output port. The content and the
output remain the same until the next input arrives. When we connect several I-bit shift
registers together, it looks as if the contents of the register are shifting.

General Design

A general design for the encoder and decoder is shown in Figure 10.20.

Figure 10.20 General design ofencoder and decoder ofa CRC code
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Note that we have n - k I-bit shift registers in both the encoder and decoder. We
have up to n - k XOR devices, but the divisors normally have several Os in their pattern,
which reduces the number of devices. Also note that, instead of augmented datawords,
we show the dataword itself as the input because after the bits in the dataword are all
fed into the encoder, the extra bits, which all are Os, do not have any effect on the right
most XOR. Of course, the process needs to be continued for another n - k steps before
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the check bits are ready. This fact is one of the criticisms of this design. Better schemes
have been designed to eliminate this waiting time (the check bits are ready after k steps),
but we leave this as a research topic for the reader. In the decoder, however, the entire
codeword must be fed to the decoder before the syndrome is ready.

Polynomials
A better way to understand cyclic codes and how they can be analyzed is to represent
them as polynomials. Again, this section is optional.

A pattern of Os and 1s can be represented as a polynomial with coefficients of 0 and
1. The power of each term shows the position of the bit; the coefficient shows the value
of the bit. Figure 10.21 shows a binary pattern and its polynomial representation. In Fig
ure 10.21a we show how to translate a binary pattern to a polynomial; in Figure 1O.21b
we show how the polynomial can be shortened by removing all terms with zero coeffi
cients and replacing xl by x and xO by 1.

Figure 10.21 A polynomial to represent a binary word

I 1 I 0 I 0 I 0 I 0 I 1 I 1 I

I iii + oX' + ox4 + o~ + o? + Ix l + Ixo I
a. Binary pattern and polynomial b. Short form

Figure 10.21 shows one immediate benefit; a 7-bit pattern can be replaced by three
terms. The benefit is even more conspicuous when we have a polynomial such as x23 +
X3 + 1. Here the bit pattern is 24 bits in length (three Is and twenty-one Os) while the
polynomial is just three terms.

Degree ofa Polynomial

The degree of a polynomial is the highest power in the polynomial. For example, the
degree of the polynomial x6 + x + 1 is 6. Note that the degree of a polynomial is 1 less
that the number of bits in the pattern. The bit pattern in this case has 7 bits.

Adding and Subtracting Polynomials

Adding and subtracting polynomials in mathematics are done by adding or subtracting
the coefficients of terms with the same power. In our case, the coefficients are only 0
and 1, and adding is in modulo-2. This has two consequences. First, addition and sub
traction are the same. Second, adding or subtracting is done by combining terms and
deleting pairs of identical terms. For example, adding x5 + x4 + x2 and x6 + x4 + x2 gives
just x6 + x5. The terms x4 and x2 are deleted. However, note that if we add, for example,
three polynomials and we get x2 three times, we delete a pair of them and keep the third.
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Multiplying or Dividing Terms

In this arithmetic, multiplying a term by another term is very simple; we just add the
powers. For example, x3 x x4 is x7 , For dividing, we just subtract the power of the sec
ond term from the power of the first. For example, x51x2 is x3.

Multiplying Two Polynomials

Multiplying a polynomial by another is done term by term. Each term of the first polyno
mial must be multiplied by all terms of the second. The result, of course, is then simplified,
and pairs of equal terms are deleted. The following is an example:

(~+X3 +~ +x)(~ +x+ 1)

=~+~+~+~+0+~+0+~+~+~+~+x

=x7 +x6 +x3 +x

Dividing One Polynomial by Another

Division of polynomials is conceptually the same as the binary division we discussed
for an encoder. We divide the first term of the dividend by the first term of the divisor to
get the first term of the quotient. We multiply the term in the quotient by the divisor and
subtract the result from the dividend. We repeat the process until the dividend degree is
less than the divisor degree. We will show an example of division later in this chapter.

Shifting

A binary pattern is often shifted a number of bits to the right or left. Shifting to the left
means adding extra Os as rightmost bits; shifting to the right means deleting some right
most bits. Shifting to the left is accomplished by multiplying each term of the polynomial
by xn, where m is the number of shifted bits; shifting to the right is accomplished by
dividing each term of the polynomial by xn. The following shows shifting to the left and
to the right. Note that we do not have negative powers in the polynomial representation.

Shifting left 3 bits:

Shifting right 3 bits:

10011 becomes 10011000

10011 becomes 10

x4 + x + 1 becomes x7 + x4 +~
x4 + x + 1 becomes x

When we augmented the dataword in the encoder of Figure 10.15, we actually
shifted the bits to the left. Also note that when we concatenate two bit patterns, we shift
the first polynomial to the left and then add the second polynomial.

Cyclic Code Encoder Using Polynomials

Now that we have discussed operations on polynomials, we show the creation of a code
word from a dataword. Figure 10.22 is the polynomial version of Figure 10.15. We can
see that the process is shorter. The dataword 1001 is represented as x3 + 1. The divisor
1011 is represented as x3 + x + 1. To find the augmented dataword, we have left-shifted
the dataword 3 bits (multiplying by x\ The result is x6 + x3

. Division is straightforward.
We divide the first term of the dividend, x6, by the first term of the divisor, x3. The first
term of the quotient is then x6/x3, or x3. Then we multiply x3 by the divisor and subtract
(according to our previous definition of subtraction) the result from the dividend. The
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result is x4, with a degree greater than the divisor's degree; we continue to divide until
the degree of the remainder is less than the degree of the divisor.

Figure 10.22 CRC division using polynomials
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It can be seen that the polynomial representation can easily simplify the operation
of division in this case, because the two steps involving all-Os divisors are not needed
here. (Of course, one could argue that the all-Os divisor step can also be eliminated in
binary division.) In a polynomial representation, the divisor is normally referred to as
the generator polynomial t(x).

The divisor in a cyclic code is normally called the generator polynomial
or simply the generator.

Cyclic Code Analysis

We can analyze a cyclic code to find its capabilities by using polynomials. We define
the following, wheref(x) is a polynomial with binary coefficients.

Dataword: d(x)
Syndrome: sex)

Codeword: c(x)
Error: e(x)

Generator: g(x)

If sex) is not zero, then one or more bits is corrupted. However, if sex) is zero, either
no bit is corrupted or the decoder failed to detect any errors.

In a cyclic code,

I. If s(x)"* 0, one or more bits is corrupted.

2. If sex) =0, either

a. No bit is corrupted. or

b. Some bits are corrupted, but the decoder failed to detect them.



294 CHAPTER 10 ERROR DETECTION AND CORRECTION

In our analysis we want to find the criteria that must be imposed on the generator,
g(x) to detect the type of error we especially want to be detected. Let us first find the
relationship among the sent codeword, error, received codeword, and the generator.
We can say

Received codeword =c(x) + e(x)

In other words, the received codeword is the sum of the sent codeword and the error.
The receiver divides the received codeword by g(x) to get the syndrome. We can write
this as

Received codeword = c(x) + e(x)
g(x) g(x) g(x)

The first term at the right-hand side of the equality does not have a remainder
(according to the definition of codeword). So the syndrome is actually the remainder of
the second term on the right-hand side. If this term does not have a remainder (syn
drome =0), either e(x) is 0 or e(x) is divisible by g(x). We do not have to worry about
the first case (there is no error); the second case is very important. Those errors that are
divisible by g(x) are not caught.

In a cyclic code, those e(x) errors that are divisible by g(x) are not caught.

Let us show some specific errors and see how they can be caught by a well
designed g(x).

Single-Bit Error

What should be the structure of g(x) to guarantee the detection of a single-bit error? A
single-bit error is e(x) =xi, where i is the position of the bit. If a single-bit error is caught,
then xi is not divisible by g(x). (Note that when we say not divisible, we mean that there
is a remainder.) If g(x) ha~ at least two terms (which is normally the case) and the coeffi
cient of xO is not zero (the rightmost bit is 1), then e(x) cannot be divided by g(x).

H the generator has more than one term and the coefficient ofxO is 1,
all single errors can be caught.

Example 10.15

Which of the following g(x) values guarantees that a single-bit error is caught? For each case,
what is the error that cannot be caught?

a. x + 1

b. x3

c. 1
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Solution
a. No xi can be divisible by x + 1. In other words, xi/ex + 1) always has a remainder. So the

syndrome is nonzero. Any single-bit error can be caught.

b. If i is equal to or greater than 3, xi is divisible by g(x). The remainder of xi/x3 is zero, and
the receiver is fooled into believing that there is no error, although there might be one.
Note that in this case, the corrupted bit must be in position 4 or above. All single-bit
errors in positions I to 3 are caught.

c. All values of i make j divisible by g(x). No single-bit error can be caught. In addition, this
g(x) is useless because it means the codeword is just the dataword augmented withn - k zeros.

Two Isolated Single-Bit Errors

Now imagine there are two single-bit isolated errors. Under what conditions can this
type of error be caught? We can show this type of error as e(x) =: xl + xi. The values of i

and j define the positions of the errors, and the difference j - i defines the distance
between the two errors, as shown in Figure 10.23.

Figure 10.23 Representation o/two isolated single-bit errors using polynomials

I' Difference: j - i

We can write e(x) = 1(xj - i + 1). If g(x) has more than one term and one term is xo, it
cannot divide 1, as we saw in the previous section. So if g(x) is to divide e(x), it must divide
xj - i + 1. In other words, g(x) must not divide Y! + 1, where t is between 0 and n - 1. However,
t=:O is meaningless and t = I is needed as we will see later. This means t should be between
2andn-1.

H a generator cannot divider + 1 (t between 0 and n - 1),
then all isolated double errors can be detected.

Example 10.16

Find the status of the following generators related to two isolated, single-bit errors.

a. x+ 1

b. x4 + I

c. x7 + x6 + 1

d. x ls +xI4 +1

Solution
a. This is a very poor choice for a generator. Any two errors next to each other cannot be detected.

b. This generator cannot detect two errors that are four positions apart. The two errors can
be anywhere, but if their distance is 4, they remain undetected.

c. This is a good choice for this purpose.

d. This polynomial cannot divide any error of typext + 1 if t is less than 32,768. This means
that a codeword with two isolated errors that are next to each other or up to 32,768 bits
apart can be detected by this generator.
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Odd Numbers ofErrors

A generator with a factor of x + 1 can catch all odd numbers of errors. This means that
we need to make x + 1 a factor of any generator. Note that we are not saying that the
generator itself should be x + 1; we are saying that it should have a factor of x + 1. If it
is only x + 1, it cannot catch the two adjacent isolated errors (see the previous section).
For example, x4 + x2 + X + 1 can catch all odd-numbered errors since it can be written
as a product of the two polynomials x + 1 and x3 + x2 + 1.

A generator that contains a factor ofx + 1 can detect all odd-numbered errors.

Burst Errors

Now let us extend our analysis to the burst error, which is the most important of all. A
burst error is of the form e(x) =eJ + ... + xi). Note the difference between a burst error
and two isolated single-bit errors. The first can have two terms or more; the second can
only have two terms. We can factor out xi and write the error as xi(xJ-i + ... + 1). If our
generator can detect a single error (minimum condition for a generator), then it cannot
divide xi. What we should worry about are those generators that divide xJ-i + ... + 1. In
other words, the remainder of (xJ-i + ... + 1)/(xr + ... + 1) must not be zero. Note that
the denominator is the generator polynomial. We can have three cases:

1. If j - i < r, the remainder can never be zero. We can write j - i =L - 1, where L is
the length of the error. So L - 1 < r or L < r + 1 or L :::;: r. This means all burst errors
with length smaller than or equal to the number of check bits r will be detected.

2. In some rare cases, if j - i = r, or L = r + 1, the syndrome is 0 and the error is unde
tected. It can be proved that in these cases, the probability of undetected burst error of
length r + 1 is (ll2r-l . For example, if our generator is x l4 +~ + 1, in which r =14, a
burst error of length L =15 can slip by undetected with the probability of (1/2)14-1 or
almost 1 in 10,000.

3. In some rare cases, if j - i > r, or L > r + 1, the syndrome is 0 and the error is unde
tected. It can be proved that in these cases, the probability of undetected burst error
of length greater than r + 1 is (112t For example, if our generator is x 14 + x3 + 1, in
which r =14, a burst error of length greater than 15 can slip by undetected with the
probability of (112)14 or almost 1 in 16,000 cases.

o All burst errors with L ::::; r will be detected.

o All burst errors with L =r + 1 will be detected with probability 1 - (112/-1•

o All burst errors with L > r + 1 will be detected with probability 1- (1/2[.

Example 10.17

Find the suitability of the following generators in relation to burst errors of different lengths.

a. x6 + 1

b. x I8 + x7 + x + 1
c. x32+~3+x7+1
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Solution
a. This generator can detect all burst errors with a length less than or equal to 6 bits; 3 out

of 100 burst errors with length 7 will slip by; 16 out of 1000 burst errors of length 8 or
more will slip by.

b. This generator can detect all burst errors with a length less than or equal to 18 bits; 8 out
of 1 million burst errors with length 19 will slip by; 4 out of I million burst errors of
length 20 or more will slip by.

c. This generator can detect all burst errors with a length less than or equal to 32 bits; 5 out
of 10 billion burst errors with length 33 will slip by; 3 out of 10 billion burst errors of
length 34 or more will slip by.

Summary

We can summarize the criteria for a good polynomial generator:

A good polynomial generator needs to have the following characteristics:

1. It should have at least two terms.

2. The coefficient of the term xO should be 1.

3. It should not divide Xl + 1, for t between 2 and n - 1.

4. It should have the factor x + 1.

Standard Polynomials

Some standard polynomials used by popular protocols for eRe generation are shown
in Table 10.7.

Table 10.7 Standard polynomials

Name Polynomial Application

CRC-8 x S+x2+x + 1 ATM header

CRC-lO xIO+x9+~+x4+x2+ I ATMAAL

CRC-16 x 16 + x12 +~ + 1 HDLC

CRC-32 x 32 + 2 6 +2 3 + x22 + x 16 + x 12 + xlI + x lO + LANs
x8 + x7 + x5 + x4 + x

2 + x + 1

Advantages of Cyclic Codes

We have seen that cyclic codes have a very good performance in detecting single-bit
errors, double errors, an odd number of errors, and burst errors. They can easily be
implemented in hardware and software. They are especially fast when implemented in
hardware. This has made cyclic codes a good candidate for many networks.

Other Cyclic Codes

The cyclic codes we have discussed in this section are very simple. The check bits and
syndromes can be calculated by simple algebra. There are, however, more powerful
polynomials that are based on abstract algebra involving Galois fields. These are beyond
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the scope of this book. One of the most interesting of these codes is the Reed-Solomon
code used today for both detection and correction.

10.5 CHECKSUM
The last error detection method we discuss here is called the checksum. The checksum
is used in the Internet by several protocols although not at the data link layer. However,
we briefly discuss it here to complete our discussion on error checking.

Like linear and cyclic codes, the checksum is based on the concept of redundancy.
Several protocols still use the checksum for error detection as we will see in future
chapters, although the tendency is to replace it with a CRe. This means that the CRC is
also used in layers other than the data link layer.

Idea

The concept of the checksum is not difficult. Let us illustrate it with a few examples.

Example 10.18

Suppose our data is a list of five 4-bit numbers that we want to send to a destination. In addition
to sending these numbers, we send the sum of the numbers. For example, if the set of numbers is
(7, 11, 12, 0, 6), we send (7, 11, 12,0,6,36), where 36 is the sum of the original numbers. The
receiver adds the five numbers and compares the result with the sum. If the two are the same,
the receiver assumes no error, accepts the five numbers, and discards the sum. Otherwise, there is
an error somewhere and the data are not accepted.

Example 10.19

We can make the job of the receiver easier if we send the negative (complement) of the sum,
called the checksum. In this case, we send (7, 11, 12,0,6, -36). The receiver can add all the num
bers received (including the checksum). If the result is 0, it assumes no error; otherwise, there is
an error.

One's Complement

The previous example has one major drawback. All of our data can be written as a 4-bit
word (they are less than 15) except for the checksum. One solution is to use one's com
plement arithmetic. In this arithmetic, we can represent unsigned numbers between 0
and 2n - 1 using only n bits. t If the number has more than n bits, the extra leftmost bits
need to be added to the n rightmost bits (wrapping). In one's complement arithmetic, a
negative number can be represented by inverting all bits (changing a 0 to a 1 and a 1 to
a 0). This is the same as subtracting the number from 2n - 1.

Example 10.20

How can we represent the number 21 in one's complement arithmetic using only four bits?

t Although one's complement can represent both positive and negative numbers, we are concerned only with
unsigned representation here.
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Solution
The number 21 in binary is 10101 (it needs five bits). We can wrap the leftmost bit and add it to
the four rightmost bits. We have (0101 + 1) = 0110 or 6.

Example 10.21

How can we represent the number -6 in one's complement arithmetic using only four bits?

Solution
In one's complement arithmetic, the negative or complement of a number is found by inverting
all bits. Positive 6 is 0110; negative 6 is 100I. If we consider only unsigned numbers, this is 9. In
other words, the complement of 6 is 9. Another way to find the complement of a number in one's
complement arithmetic is to subtract the numberfrom 2n - I (16 - 1 in this case).

Example 10.22

Let us redo Exercise 10.19 using one's complement arithmetic. Figure 10.24 shows the process at
the sender and at the receiver. The sender initializes the checksum to 0 and adds all data items and
the checksum (the checksum is considered as one data item and is shown in color). The result is
36. However, 36 cannot be expressed in 4 bits. The extra two bits are wrapped and added with
the sum to create the wrapped sum value 6. In the figure, we have shown the details in binary. The
sum is then complemented, resulting in the checksum value 9 (15 - 6 = 9). The sender now sends
six data items to the receiver including the checksum 9. The receiver follows the same procedure
as the sender. It adds all data items (including the checksum); the result is 45. The sum is
wrapped and becomes 15. The wrapped sum is complemented and becomes O. Since the value of
the checksum is 0, this means that the data is not corrupted. The receiver drops the checksum and
keeps the other data items. If the checksum is not zero, the entire packet is dropped.

Figure 10.24

Sender site Receiver site

7 7
11 11
12 12
0 0
6 6
0 ~ 7, II, 12,0,6,9~ 9

Sum~ 36 Sum~ 45
Wrapped sum~ 6 Packet Wrapped sum~ 15

Checksum~ 9 Checksum~ 0

L!.J!JO 1 0 0
~10

o 1 1 0
100 1

36

6
9

L!....Q.J 1 1 0 1
~10

1 1 1 1

o 0 0 0

45

15
o

Details of wrapping
and complementing

Details of wrapping
and complementing

Internet Checksum
Traditionally, the Internet has been using a 16-bit checksum. The sender calculates the
checksum by following these steps.
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Sender site:

1. The message is divided into 16-bit words.

2. The value of the checksum word is set to O.

3. All words including the checksum are added ushtg one's complement addition.

4. The sum is complemented and becomes the checksum.

5. The checksum is sent with the data.

The receiver uses the following steps for error detection.

Receiver site:

1. The message (including checksum) is divided into 16-bit words.

2. All words are added using one's complement addition.

3. The sum is complemented and becomes the new checksum.

4. If the value of checksum is 0, the message is accepted; otherwise, it is rejected.

The nature of the checksum (treating words as numbers and adding and comple
menting them) is well-suited for software implementation. Short programs can be written
to calculate the checksum at the receiver site or to check the validity of the message at
the receiver site.

Example 10.23

Let us calculate the checksum for a text of 8 characters ("Forouzan"). The text needs to be divided
into 2-byte (l6-bit) words. We use ASCII (see Appendix A) to change each byte to a 2-digit hexa
decimal number. For example, F is represented as Ox46 and 0 is represented as Ox6F. Figure 10.25
shows how the checksum is calculated at the sender and receiver sites. In part a of the figure,
the value of partial sum for the first column is Ox36. We keep the rightmost digit (6) and insert the

Figure 10.25

I 0 1 3 Carries

4 6 6 F (Fo)

7 2 6 F (ro)

7 5 7 A luz)

6 1 6 E (an)

0 0 0 0 Checksum (initial)

8 F C 6 Sum (partial)

1

8 F C 7 Sum

7 0 3 8 Checksum (to send)

a. Checksum at the sender site

1 () 1 3 Carries

4 6 6 F IFo)

7 2 6 F (ro)

7 5 7 A (uz)

6 1 6 E (an)

7 0 3 8 Checksum (received)

F F F E Sum (partial)

1

F F F F Sum

0 0 0 () Checksum (new}

b. Checksum at the receiver site
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leftmost dight (3) as the carry in the second column. The process is repeated for each column.
Hexadecimal numbers are reviewed in Appendix B.

Note that if there is any corruption, the checksum recalculated by the receiver is not all as.
We leave this an exercise.

Performance

The traditional checksum uses a small number of bits (16) to detect errors in a message
of any size (sometimes thousands of bits). However, it is not as strong as the CRC in
error-checking capability. For example, if the value of one word is incremented and the
value of another word is decremented by the same amount, the two errors cannot be
detected because the sum and checksum remain the same. Also if the values of several
words are incremented but the total change is a multiple of 65535, the sum and the
checksum does not change, which means the errors are not detected. Fletcher and Adler
have proposed some weighted checksums, in which each word is multiplied by a num
ber (its weight) that is related to its position in the text. This will eliminate the first
problem we mentioned. However, the tendency in the Internet, particularly in designing
new protocols, is to replace the checksum with a CRC.

10.6 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books. The items in brackets [...] refer to the reference list at the end of the text.

Books

Several excellent book are devoted to error coding. Among them we recommend [Ham80],
[Zar02], [Ror96], and [SWE04].

RFCs

A discussion of the use of the checksum in the Internet can be found in RFC 1141.

10.7 KEY TERMS
block code

burst error

check bit

checksum

codeword

convolution code

cyclic code

cyclic redundancy check (CRC)

dataword

error

error correction

error detection

forward error correction

generator polynomial

Hamming code

Hamming distance

interference

linear block code

minimum Hamming distance

modular arithmetic
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modulus

one's complement

parity bit

parity-check code

polynomial

redundancy

Reed-Solomon

register

retransmission

shift register

single-bit error

syndrome

two-dimensional parity
check

10.8 SUMMARY
o Data can be corrupted during transmission. Some applications require that errors be

detected and corrected.

o In a single-bit error, only one bit in the data unit has changed. A burst error means
that two or more bits in the data unit have changed.

o To detect or correct errors, we need to send extra (redundant) bits with data.

o There are two main methods of error correction: forward error correction and correc
tion by retransmission.

o We can divide coding schemes into two broad categories: block coding and convo
lution coding.

o In coding, we need to use modulo-2 arithmetic. Operations in this arithmetic are very
simple; addition and subtraction give the same results. we use the XOR (exclusive
OR) operation for both addition and subtraction.

o In block coding, we divide our message into blocks, each of k bits, called datawords.
We add r redundant bits to each block to make the length n ::: k + r. The resulting n-bit
blocks are called codewords.

o In block coding, errors be detected by using the following two conditions:

a. The receiver has (or can find) a list of valid codewords.

b. The original codeword has changed to an invalid one.

o The Hamming distance between two words is the number of differences between
corresponding bits. The minimum Hamming distance is the smallest Hamming
distance between all possible pairs in a set of words.

o To guarantee the detection of up to s errors in all cases, the minimum Hamming dis
tance in a block code must be dmin ::: s + 1. To guarantee correction of up to t errors in
all cases, the minimum Hamming distance in a block code must be dmin ::: 2t + 1.

o In a linear block code, the exclusive OR (XOR) of any two valid codewords creates
another valid codeword.

o A simple parity-check code is a single-bit error-detecting code in which n ::: k + 1
with dmin ::: 2. A simple parity-check code can detect an odd number of errors.

o All Hamming codes discussed in this book have dmin ::: 3. The relationship between
m and n in these codes is n::: 2m - 1.

o Cyclic codes are special linear block codes with one extra property. In a cyclic code,
if a codeword is cyclically shifted (rotated), the result is another codeword.
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o A category of cyclic codes called the cyclic redundancy check (CRC) is used in
networks such as LANs and WANs.

o A pattern of Os and Is can be represented as a polynomial with coefficients of 0 and 1.

o Traditionally, the Internet has been using a I6-bit checksum, which uses one's com
plement arithmetic. In this arithmetic, we can represent unsigned numbers between
oand 2n -1 using only n bits.

10.9 PRACTICE SET

Review Questions
1. How does a single-bit error differ from a burst error?

2. Discuss the concept of redundancy in error detection and correction.

3. Distinguish between forward error correction versus error correction by retransmission.

4. What is the definition of a linear block code? What is the definition of a cyclic code?

5. What is the Hamming distance? What is the minimum Hamming distance?

6. How is the simple parity check related to the two-dimensional parity check?

7. In CRC, show the relationship between the following entities (size means the number
of bits):

a. The size of the dataword and the size of the codeword

b. The size of the divisor and the remainder

c. The degree of the polynomial generator and the size of the divisor

d. The degree of the polynomial generator and the size of the remainder

8. What kind of arithmetic is used to add data items in checksum calculation?

9. What kind of error is undetectable by the checksum?

10. Can the value of a checksum be all Os (in binary)? Defend your answer. Can the
value be allIs (in binary)? Defend your answer.

Exercises

11. What is the maximum effect of a 2-ms burst of noise on data transmitted at the fol
lowing rates?

a. 1500 bps

b. 12 kbps

c. 100 kbps

d. 100 Mbps

12. Apply the exclusive-or operation on the following pair of patterns (the symbol EB
means XOR):

a. (10001) EB (10000)

b. (10001) EB (10001) (What do you infer from the result?)

c. (11100) EB (00000) (What do you infer from the result?)

d. (10011) EEl (11111) (What do you infer from the result?)
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13. In Table 10.1, the sender sends dataword 10. A 3-bit burst error corrupts the code
word. Can the receiver detect the error? Defend your answer.

14. In Table 10.2, the sender sends dataword 10. If a 3-bit burst en-or con-upts the first
three bits of the codeword, can the receiver detect the error? Defend your answer.

15. What is the Hamming distance for each of the following codewords:

a. d (10000, 00000)

b. d (10101, 10000)

c. d (11111,11111)

d. d (000, 000)

16. Find the minimum Hamming distance for the following cases:

a. Detection of two en-ors.

b. Correction of two errors.

c. Detection of 3 errors or correction of 2 errors.

d. Detection of 6 errors or correction of 2 errors.

17. Using the code in Table 10.2, what is the dataword if one of the following code
words is received?

a. 01011

b. 11111

c. 00000

d. 11011

18. Prove that the code represented by Table 10.8 is not a linear code. You need to find
only one case that violates the linearity.

Table 10.8 Table for Exercise 18

Dataword Codeword

00 00000

01 01011

10 10111

11 11111

19. Although it can mathematically be proved that a simple parity check code is a linear
code, use manual testing of linearity for five pairs of the codewords in Table 10.3 to
partially prove this fact.

20. Show that the Hamming code C(7,4) of Table lOA can detect two-bit en-ors but not
necessarily three-bit error by testing the code in the following cases. The character "V"
in the burst en-or means no en-or; the character "E" means an error.

a. Dataword: 0100 Burst error: VEEVVVV

b. Dataword: 0111 Burst error: EVVVVVE

c. Dataword: 1111 Burst error: EVEVVVE

d. Dataword: 0000 Burst en-or: EEVEVVV
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21. Show that the Hamming code C(7,4) of Table lOA can correct one-bit errors but
not more by testing the code in the following cases. The character "V" in the burst
error means no error; the character "E" means an error.

a. Dataword: 0100 Burst error: EVVVVVV

b. Dataword: 0111 Burst error: VEVVVVV

c. Dataword: 1111 Burst error: EVVVVVE

d. Dataword: 0000 Burst error: EEVVVVE

22. Although it can be proved that code in Table 10.6 is both linear and cyclic, use
only two tests to partially prove the fact:

a. Test the cyclic property on codeword 0101100.

b. Test the linear property on codewords 0010110 and 1111111.

23. We need a dataword of at least 11 bits. Find the values of k and n in the Hamming
code C(n, k) with dmin ::: 3.

24. Apply the following operations on the corresponding polynomials:

a. (x3 + xl + X + 1) + (x4 + xl + x + 1)

b. (x3 + xl + x + 1) - (x4 + xl + x + 1)

c. (x3 + xl) X (x4 + x2 + x + 1)

d. (x3 + x2 + x + 1) / (x2 + 1)

25. Answer the following questions:

a. What is the polynomial representation of 10111O?

b. What is the result of shifting 101110 three bits to the left?

c. Repeat part b using polynomials.

d. What is the result of shifting 101110 four bits to the right?

e. Repeat part d using polynomials.

26. Which of the following CRC generators guarantee the detection of a single bit
error?

a. x3 + x + 1

b. x4 + xl

c. 1

d. x2 + 1

27. Referring to the CRC-8 polynomial in Table 10.7, answerthe following questions:

a. Does it detect a single error? Defend your answer.

b. Does it detect a burst error of size 6? Defend your answer.

c. What is the probability of detecting a burst error of size 9?

d. What is the probability of detecting a burst error of size 15?

28. Referring to the CRC-32 polynomial in Table 10.7, answer the following questions:

a. Does it detect a single error? Defend your answer.

b. Does it detect a burst error of size 16? Defend your answer.

c. What is the probability of detecting a burst error of size 33?

d. What is the probability of detecting a burst error of size 55?



306 CHAPTER 10 ERROR DETECTION AND CORRECTION

29. Assuming even parity, find the parity bit for each of the following data units.

a. 1001011

b. 0001100

c. 1000000

d. 1110111

30. Given the dataword 1010011110 and the divisor 10111,

a. Show the generation of the codeword at the sender site (using binary division).

h. Show the checking of the codeword at the receiver site (assume no error).

3 I. Repeat Exercise 30 using polynomials.

32. A sender needs to send the four data items Ox3456, OxABCC, Ox02BC, and OxEEEE.
Answer the following:

a. Find the checksum at the sender site.

b. Find the checksum at the receiver site if there is no error.

c. Find the checksum at the receiver site if the second data item is changed to
OxABCE.

d. Find the checksum at the receiver site if the second data item is changed to
OxABCE and the third data item is changed to Ox02BA.

33. This problem shows a special case in checksum handling. A sender has two data
items to send: Ox4567 and OxBA98. What is the value of the checksum?


