'L EP,p
q%l ginliei ,.-"'

o

Enterprise Management
Systems Part I: Architectures
and Standards

Deepak Kakadia, Sun Microsystems, Inc., Dr. Tony G.
Thomas, AdventNet, Inc., Dr. Sridhar Vembu,
Adventnet, Inc., Jay Ramasamy, AdventNet, Inc.

Sun BluePrints™ OnLine - April 2002

D Sun

microsystems

http://www.sun.com/blueprints

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95045 U.S.A.
650-960-1300

Part No. 816-4525-10
Revision 1.0, 04/03/02
Edition: April 2002

Copyright 2002 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Enterprise JavaBeans, EJB, JMX, JDBC, Java, JavaBeans, Java Database Connectivity,
SunNet Manager, Solstice Enterprise Manager, J2EE, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6 /95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “ASIS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systémes Berkeley BSD licenciés par I'Université de Californie.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, Enterprise JavaBeans, EJB, JMX, JDBC, Java, JavaBeans, Java Database Connectivity,
SunNet Manager, Solstice Enterprise Manager, J2EE, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service,
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de 'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d"utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d"utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

& 9]

Please Adobe PostScript
Recycle

Enterprise Management Systems,
Part I: Architectures and Standards

Enterprise Management Systems (EM Systems) are Network Management Systems
(NMSs) capable of managing devices, independent of vendors and protocols, in
Internet Protocol (IP)-based enterprise networks. Element Management Systems
(EMSs), on the other hand, are NMSs that are designed to manage a particular
device, often implemented by the device manufacturer. A summary of typical
architectures and a clarification of the myriad of standards are presented to help the
reader better understand the implementations of various third-party vendor EM
Systems solutions. The architectures of two enterprise management software
products, Sun™ Management Center (Sun MC) 3.0 software, an EMS solution, and
AdventNet WebNMS 2.3, a standards-compliant development environment are
presented.

This article is the first of a two-part article that describes how to manage services in
Service Driven Networks (SDNs). This article provides an introduction to EM
Systems and provides the reader with a good understanding of the fundamental
architectures of both software products. These products solve the problem of
managing complex heterogeneous SDN environments. Enterprise Management
Systems Part II: Enterprise QoS Provisioning due in the May 2002 issue continues to
build on this knowledge, describing how these products are integrated to provide a
complete solution that can effectively manage a multivendor environment, and
describes how to provision end-to-end services.

This article details the following;:

= Introduction to EM Systems

= Overview of architectures

= EM Systems standards

= Sun MC 3.0 software architecture

= AdventNet WebNMS 2.3 architecture

Introduction

This article defines EM Systems as NMSs capable of managing devices, independent
of vendors and protocols, in IP-based enterprise networks. This method is in contrast
to NMS for Carrier Networks, which have different architectures and are not covered
in this article. EM Systems are software solutions that allow systems administrators
to manage a vast set of heterogeneous devices in their data centers.

In the last two decades, we have witnessed three major phases of evolution in
enterprise networking technology. The first phase moved from a centralized
mainframe and dumb terminal architecture to a distributed architecture. A
distributed architecture was composed of islands of departmental local area
networks (LANs). The second phase involved linking all these disparate
departmental LANs and creating an enterprise-wide network. This configuration
had two major implications. First, the complexity of managing the enterprise-wide
network increased profoundly. Second, a heterogeneous environment emerged from
this integrated architecture. The third phase arose as a result of Web-based enterprise
services. This changed the enterprise traffic patterns and increased the dependency
on mission-critical enterprise services and infrastructures.

EM Systems have tried to keep pace with these changes. In the early days,
proprietary systems were created mainly by vendors of computer equipment;
however, these systems could not interoperate with other vendor’s systems or
devices. This conflict created the need for standards. In 1988, Simple Network
Management Protocol (SNMP) was created to address some of the interoperability
issues. However, as the requirements for more intelligent management systems
arose; the limitations of SNMP were soon discovered. Two recent NMS initiatives,
Java™ Management extensions JMX™) and Solaris™ Web-based Enterprise
Management (WBEM) Services, attempt to address these concerns.

Architectures

This section provides an overview of the network and software architecture of
typical EM Systems from two perspectives.

1. Network Architecture—This perspective describes the physical network
topology of the managers and agents.

2. Software Architecture—This perspective describes the software construction of
the manager and agent components.

2 Enterprise Management Systems, Part |: Architectures and Standards ¢ April 2002

Network Architectures

The network architecture describes how the EM Systems is deployed. There are
several models that can be employed to organize how the managers are organized.
Models can be a single central manager, hierarchical managers, distributed peer
managers, etc. Network architecture also includes the management protocols that are
used to communicate information about the management resource between the
managers and agents.

EM Systems can be organized in a variety of architectures, and can communicate
management information using one of two standard network management
protocols: SNMP for IP-based networks and Common Information Model Protocol
(CMIP) for Open Systems Interconnection (OSI)-based networks. Due the industry-
wide acceptance of SNMP, CMIP is not discussed in this article. This section
provides an overview of the possible network architectures, while SNMP is
discussed in the “Standards” section.

FIGURE 1 describes an overview of the main types of ES System architectures. The
choice of architecture has a direct impact on scalability, availability, performance,
and security. FIGURE 1 A) describes a centralized architecture, where a single NMS
manages all the devices on an enterprise network. The single NMS has limited
performance and scalability, in terms of network and computing capabilities. All
services, S1, S2, S3, are executed on the central server. These services are
management applications that perform one or more Fault, Configuration,
Accounting, Performance, and Security (FCAPS) functions, which are described
later.

The single network connection becomes congested as the number of managed
devices increases. The management server also reaches its limits in terms of polling
for events and processing traps. This is the case of the early model EM Systems, such
as the initial release of SunNet Manager™ platform. The single management server
model is a single-point-of-failure (SPOF).

FIGURE 1 B) describes a hierarchical architecture, where there are many local
management servers managing small local networks and propagating important
events to a higher central management system. This architecture is also referred to as
the “Manager of Managers”. This model offers better network and server processing
performance capabilities. The bulk of the network traffic is localized, because only
filtered and correlated events and information are forwarded to the central server.
Availability is increased as a local management server failure does not impact the
entire system. If the central server fails, the local server can still be accessed for local
management information.

FIGURE 1 C) describes a highly distributed system, where any management server
can communicate with any managed device. This architecture offers a highly
available solution. If one management system fails, there is a backup system to
assume responsibility of that domain. This approach also permits specialization of
services. Only one expert in each service can be required to manage the entire

Architectures 3

network. This approach is scalable; more management servers can be added as
required to alleviate overloaded systems. In most cases, the management systems are
geographically remotely located, resulting in increased network traffic in the wide
area network (WAN) links, creating a source of performance penalty.

NMS console
and server
— =
Managed Managed Managed Managed
device device device device

A) Centralized network architecture,
all services reside on central server

NMS console

Managed Managed Managed Managed
device device device device

B) Hierarchical network architecture,
(manager of managers)

NMS console NMS console

I
m— |
[1 T 1 .—I I
Managed Managed Managed Managed
device device device device

C) Distributed network architecture,
(network of managers), specialization of services

FIGURE1 NMS Topologies

Software Architectures

The software architecture describes the EM Systems internal construction. This
architecture includes the information model that is the software representation of the
managed resources and the functional capabilities of the network management
system, such as FCAPS functions.

Enterprise Management Systems, Part I: Architectures and Standards « April 2002

EM Systems software architectures can be classified into the following categories:

1. Element Management Systems (EMSs)—This class of systems are developed by
computer and network switch manufacturers, and are specialized to manage
only a particular device.

2. Management Platforms—This class of systems are actually development
frameworks for NMSs. There are two development frameworks available, one
for the agent side and the other for the management side.

3. Management Applications—This class of systems can implement one or more
FCAPS functions and may implement these functions in both categories,
depending on the scope of the managed resources.

4. Management Systems—This class of systems provides core services, which are
accessed via APIs, to the management applications.

Element Management Systems

This class of systems exploit vendor-specific management information base (MIB)
variables. A MIB is a set of data objects that are logically grouped, describing the
attributes that form the management interface of a device, either hardware or
software. There is one standard SNMDP MIB, and all vendors extend the standard
MIB to add device-specific management objects. MIB definitions have standard
syntax and encoding—for example, Abstract Syntax Notation (ASN.1) and Basic
Encoding Rules (BER)—which, essentially, allow interoperability.

Management Platforms

In the Management Platforms class of systems, agent development toolkits, such as
Windriver, facilitate device manufacturers to build SNMP agents that run on Real-
Time Operating Systems, such as VxWorks. This article focuses on the management
side of frameworks that facilitate communicating with agents and the development
of applications that process this agent information. These platforms provide core
functions (see FIGURE 2) such as Event Services, Topology Services, etc. Applications
access these core services through APIs. The communication protocols communicate
management information between agents and managers. Management Platforms
also are able to integrate various vendor-specific EMSs to create a complete
enterprise-wide solution. Interoperability is a major issue among vendors and is the
main factor driving the call for standards. Another key integration issue is how the
data that represents managed resources is represented and decoded so all platforms
can understand the information. The information model describes the logical
representation of managed resources and is another important consideration for
integration. Adherence to a standards-based information model allows for lossless
vendor interoperability. If vendors do not adhere to standards, then only common
data can be integrated among vendor systems.

Architectures 5

There are some key technologies that have eased the implementation of integrated
solutions.

» Extensible Markup Language (XML) has proved to be a helpful technology,
drastically simplifying customization and integration (detailed in Part II of this
article, May issue). Previously, significant coding efforts were required to
integrate, and customize solutions.

= J2EE™ technology has proved to simplify the development of sophisticated
management applications, where previously, tightly coupled APIs required
significant coding efforts.

eation

Management
applications
V=73
z%//'czr/oﬂ
cation

Accounting
lcation

Performarce 1mornitornng

7
Mib
Lbrowser

APIs

Management system
core services
Cornfiguration
services
se/vices
Topology
services
2
services

Obyject

sesvices
services

Perfor

Cormmunication

Communication
protocols

FIGURE2 Management System Software Architecture

6 Enterprise Management Systems, Part |: Architectures and Standards ¢ April 2002

Management Applications—Fault, Configuration,
Accounting, Performance, and Security

The management applications are the set of high-level Graphical User Interface
(GUI) based applications that are used by operators to manage the enterprise
network. A managed application implemented on an EMS can only manage
resources on that local device; whereas a management application implemented on a
management platform can access local and remote, and can call upon the services
implemented at the EMS. Most EM Systems use the following common functions:

» Fault Management

» Configuration Management
= Accounting Management

» Performance Management
= Security Management

Fault Management applications include processing all events and determining if a
fault is detected. Fault detection requires other functions including filter events,
logging to maintain historical records that detect long-term trends, monitoring,
notification, and reporting by generating alarms.

Configuration Management allows the operator to verify and modify the
configuration of managed devices. To configure one service that spans only one
device is a matter of setting some vendor variables or performing a set of simple
tasks. However, service-based networks that provide more sophisticated services,
such as Quality of Service (QoS) or virtual private network (VPN), may span several
devices, plus need frequent modifications, pose new challenges. This challenge is
discussed in detail in the Sun BluePrints Online article, “Enterprise Management
Systems for Service Driven Networks: Part II: QoS Provisioning an Integrated
Approach”, available in the May 2002 issue.

Accounting Management is more important for telecommunication networks rather
than enterprise networks. The Accounting function maintains usage-based statistics
for billing purposes.

Performance Management provides utilities to the operator to define and
periodically measure performance-related variables. These measurements are then
used to compare against service level agreements (SLAs). Resources are monitored
for bottlenecks and for user-defined thresholds that exceed the limits. These
measurements can be saved, and the historical performance data collected used for
capacity planning.

Security Management is a massive topic in itself, however, these major features
allow network services to be accessed in a secure manner in a distributed network:

= Authentication—Verifies the person attempting to access a resource.
= Authorization—Verifies that the user is permitted to perform certain operations
offered by a resource.

Architectures 7

= Data integrity—Verifies the integrity of the cryptographic data checksum that
confirms the integrity of unaltered data.

= Auditing—Historical tracking of logs used in postmortem investigations as a
result of security incidents or proactive precautionary measures.

Although, not strictly belonging to FCAPS, there are essential utilities that most
practical NMSs include, such as MIB browsers. The typical MIB browser allows the
operator to view the MIB tree, using the point-and-click GUI of a particular device.
The display shows the MIB variable, the values, and the structure of the MIB for a
particular device.

Management System

The Management System provides core services which are accessed through APIs to
the management applications. This last section describes the basic high-level
applications that provide the functionality of most EMSs, and that pull data from
various functions from within the NMS. The NMS has a set of core services that
continuously retrieve and process raw data. The following is a summary list of the
basic service modules provided by most platforms.

= Configuration Services module

= Event Services module

= Topology Services module

= Communication Services module
= Object Services module

The Configuration Services module translates generic high-level configuration
commands to device-specific mappings, generating the appropriate commands to
configure the actual device. To accomplish the task of configuring a device, the
configuration module may log in and use the command line interface (CLI) of the
device, or possibly configure the device using vendor-specific MIB and SNMPs.

The Event Services module receives all traps from the managed devices and events
created by other modules. Internally created events may be generated for important
notifications, such as an exceeded polled threshold.

The Topology Services module maintains relations between managed resources.
This module is not only used for graphically displaying topologies in the GUI, but it
is also used by applications, such as event correlation, to determine root causes by
analyzing relationships and dependencies among devices. The topology service also
performs the initial population of the managed resource database where EMSs start
by performing an auto discovery (or read text configuration data from a file). As
devices are discovered and probed, raw data is used to instantiate and populate the
managed resource objects, then is saved in persistent storage.

The Communication Services module contains the protocols and encoding to send
and receive management information between the management system and the
agents.

8 Enterprise Management Systems, Part I: Architectures and Standards « April 2002

The Performance Services module is the set of processes that continuously probe
managed devices for performance-related data and forward it to the performance
management applications

The Object Services module provides persistent storage for all the managed
resources and related data. Larger implementations use relational databases, such as
Oracle. In contrast EMSs are object-oriented databases. Upon the initial startup, as
objects are instantiated, the attributes are populated from the relational database.
Other EMSs use object-oriented databases, such as Versant, and can have serious
integrity issues on large deployments.

Standards

Standards are specifications for implementing a particular network management
function. By adhering to standards, different vendor implementations are
guaranteed to interoperate. The following sections detail SNMP framework (also
known as the Internet standard management framework).

Simple Network Management Protocol

The SNMP framework was developed for IP-based networks in the late 1980s (for
additional details see the “Related Information” section), and is the dominant
framework in the computing industry for the management of these devices. The
SNMP management framework has undergone three major revisions, with the latest
being SNMP V3.

The initial release of SNMP had several weaknesses:

= Access control such as, Community Strings, were transmitted in clear text
= Transfer of table data required multiple small operations

= Limited trap types

» The “Urgent trap message” was the only command the agent could initiate

These limitations were addressed in SNMP V2, which is currently the dominant
protocol in the industry and the version detailed in this article.

FIGURE 3 illustrates an overview of the SNMP V2 framework. The “manager”
communicates with various managed devices, which are running an SNMP agent.
The SNMP framework consists of four major components:

= Managed devices hosting an embedded SNMP agent.
= Management server communicating with the managed devices and providing
services to management applications.

Standards 9

= Management protocol utilizing the SNMP protocol for exchanging messages
between the manager and agents by encoding management information in BER.

= Management Information model defining all managed resources in a pseudo
object-oriented manner—a manner where all objects are stored virtually in a MIB.

Managed
device

SNMP
agent

UDP
P

Data link

PHY
Manager GetRequest

\/

Management GetNextRequest Managed
applications device

SNMP
agent

UDP
P

Yy

SetRequest

SNMP GetBulkRequest
manager

\J
AN

InformRequest

UDP
IP

Report

Yy

Data link

PHY
Data link Response

PHY _ SNMPV2TRAP

A

Managed
device

SNMP
agent

UDP
P

4

Data link
PHY

FIGURE 3 SNMP V2 Framework

SNMP Operations

FIGURE 3 also illustrates the following SNMP V2 operations.

= Get-Request (or read) obtains information from the agent about an attribute of a
managed object.

= GetNext does the same thing as the Get-Request operation for the next object in
the tree of objects on the managed device.

= Set (or write) sets the value of an attribute of a managed object.

= TRAP tells the manager about some event on the managed device.

10 Enterprise Management Systems, Part |: Architectures and Standards ¢ April 2002

= Get-Bulk-Request gets large amounts of data in one single operation, for example
all the data in a large table. A new feature in SNMP V2.

= Inform-Request allows a manager to communicate management information to
another manager.

= Response returns by the agent in response to a Get-Request, GetNextRequest,
GetBulkRequest, SetRequest, or InformRequest protocol data unit (PDU).

Management Information Base

The MIB contains a description of the object hierarchy on the managed device, the
name (called Object ID), syntax, and access privileges for each variable in the MIB.
For example, when the MIB module is loaded in a MIB browser, the label of the
variable, for example sysDescr , can be used to identify it, because the MIB browser
uses MIB module to translate this label to an Object ID.

Specifying SNMP Variables in GetRequests

To specify an object to an SNMP agent, both the Object Name or ID (which defines
the type of object) and the instance (the specific object of the given type) need to be
provided. From the MIB, you get the Object ID, to which an instance needs to be
added. For non tabular (or scalar) objects, this is simply an instance of 0 (for
example, sysDescr.0). For tabular objects, the instance is defined by the MIB and
is a sequence of one or more variables (for example,
interfaces.ifTable.ifEntry.ifindex.1 = 1)

In order to get and set SNMP variables, you need to specify the Object ID plus the
instance. You can also use GetNext, and specify just the Object ID from the MIB (for
example, sysDescr), and get the first instance of that type from the SNMP agent.
This method works for all types of objects.

When using the MIB browser, select the MIB node that you need, and either select
GetNext or add the instance you need at the end of the Object ID and use the Get
command.

Web-based Enterprise Management/Common Information
Model

The standard Web-based Enterprise Management (WBEM) was originally a
consortium of several manufacturers that wanted to develop an open platform and
protocol-neutral Web-based network management architecture. The original goals
were to create a set of standards that allowed Web browser-based applications to
share management information from any vendor. This application originally
required Web-based technologies and an HTTP-based management protocol. Over
the years, the consortium developed a highly successful standard information

Standards 11

12

model, called the Common Information Model (CIM). The CIM allows any vendor to
extend their vendor-specific resources from a common set of superclasses. The CIM
is composed of the following components:

= MetaSchema is the object model.

= Managed Object Format (MOF) is the standard textual syntax for specifying the
description of managed resources.

= Extensible Markup Language (XML) is the standard language that replaced the
original Hypermedia Management Protocol (HMMP), which was developed by
Distributed Management Task Force (DMTF).

MetaSchema is partitioned into the following object (class) hierarchies:

= Core Model—A set of classes that are common to all management systems. This
includes objects such as Managed System Element, Physical Element, Logical
Element, System, and Service.

= Common Model—A set of classes that subclass from the core model and are
related to one vertical segment, such as Physical, Systems, Devices, Applications,
and Networks.

= Extensions Model—A set of vendor-specific classes that extend from the common
model classes.

The DMTF developed a MetaSchema mapping from the CIM MetaSchema to an
XML MetaSchema, which is now used in the management protocol.

Enterprise Management Systems, Part |: Architectures and Standards « April 2002

FIGURE 4 presents an overview of the WBEM/CIM architecture.

Management
applications
catiorn

Fault imanagerment
E

Accournting

eatios

Perforimarce moritorng
Security
application
Object
Lbrowser

APIs

CIM
object
manager

CIM
object
provider APIs

Communication
protocols

FIGURE4 WBEM/CIM Architecture

The management applications access the services of the CIM object manager, which
accepts requests for creating namespaces, manipulating objects, retrieving/storing

management information into the CIM persistent store. If the CIM object manager is
unable to service a request, that request is forwarded to the CIM object provider. The
CIM object provider translates from the CIM format to a device-specific format, such
as structure of management information (SMI)/SNMP, and performs that operation.

The Solaris™ WBEM services and Sun™ WBEM software development kit (SDK)
provide these APIs, a query language, and other features that assist developers in
creating complete WBEM solutions. Please see the “Related Information” section for
additional information on WBEM.

Standards 13

Java Management Extensions

Java Management extensions (JMX) was created to address some of the limitations of
SNMP. For instance, SNMP only permits primitive operations, so if you need an
additional agent, side intelligence is required. For example, figuring out whether a
spurious trap should be sent or not. The limitations of SNMPs can be overcome by
using a JMX technology-based agent. The Sun Microsystems product, Java™
Dynamic Management Kit, facilitates the creation of intelligent agents using
JavaBeans™ architecture. A MIB compiler included in the kit, reads in a MIB, creates
the beans and stubs, and then allows you to fill in the logic.

JMX provides developers of Java technology-based applications, across all industries
with the means to instrument Java platform code, create smart agents and managers
in the Java programming language, implement distributed management middle-
ware, and smoothly integrate these solutions into existing management systems. For
additional information on JMX technology, please see the “Related Information”
section. FIGURE 5 illustrates how the various components of JMX technology fit
together. The JMX specification architecture is divided into three levels, or layers,
which are used interchangeably.

= Instrumentation layer—Provides manageability to any Java technology-based
object. This level is aimed at the entire developer community utilizing Java
technology. This level provides management of Java technology, which is
standard across all industries.

= Agent layer—Provides management agents. JMX technology agents are containers
that provide core management services, that can be dynamically extended by
adding JMX technology resources. This level is aimed at the management
solutions development community and provides management through Java
technology.

= Distributed Services layer—Provides management components that can operate
as a manager or agent for distribution and consolidation of management services.
This level is aimed at the management solutions development community and
completes the management through Java technology provided by the agent layer.

In addition, JMX technology provides a number of Java technology APIs for existing
standard management protocols. These APIs are independent of the three-level
model, yet they are essential because they enable JMX technology applications, in
the Java programming language, to link with existing management technologies.

14 Enterprise Management Systems, Part I: Architectures and Standards < April 2002

Custom
compliant management
management application
application '

)

: I Proprietary protocol
d IMX

I technology

'm manager

()

)

()
{
{

Protocol
adapter

MBean server

Distributed services

Agent Agent
service 3 service 4

Managed Managed Java virtual machine
resource 1 resource 2 (managed node)

Instrumentation
layer

FIGURE5S JMX Specification Architecture Components

A JMX technology agent is a management entity implemented in accordance with
the JMX agent specification, and tested against the Agent Level Compatibility Test
Suite. A JMX agent specification is composed of objects from the Java Dynamic
Management Kit called Management Beans (MBeans). A JMX agent specification
consists of an MBeans server, a set of MBeans representing managed resources, and
at least one protocol adaptor or connector. A JMX agent specification can also
contain management services, also represented as MBeans. The MBeans server is a
registry for MBeans in the agent. The MBeans server is the component that provides
the services allowing the manipulation of MBeans. All management operations
performed on the MBeans are done through Java technology-based interfaces on the
MBeans server.

There are two concepts used in accessing JMX technology agents: protocol adapters
and connectors. Protocol adaptors give a representation of the MBeans directly in
another protocol, such as hypertext markup language (HTML) or SNMP. Connectors
include a remote component that provides end-to-end communications with the
agent over a variety of protocols (for example HTTP, HTTP, and internet inter-orb
protocol (IIOP)). Protocol adaptors and connectors let management applications
access a JMX agent specification and manipulate the MBeans it contains. Because all

Standards 15

connectors have the same Java technology-based interface, management applications
use the connector most suited to their networking environment, and even change
connectors transparently as needs evolve.

JMX technology and MBeans provide:

» Standard manageability for any Java application, sometimes in just three to five
additional lines of code.

= The ability to embed all necessary management information in a standard way in
the resource to be managed.

= The ability to provide a wrapper for instrumented resources not based on Java
technology (even proprietary or custom solutions) with Java technology-based
management systems.

A JMX technology compliant agent is automatically capable of managing JMX
technology resources. A non-JMX technology agent may also support J]MX
technology resources. Finally, the JMX technology instrumentation layer does not
introduce any dependencies on external classes, a resource is entirely self contained.

The JMX specification agent and manager levels provide a flexible, distributed, and
dynamic management infrastructure to be implemented in the Java programming
language. By extending the Java programming language, J]MX technology enhances
the capabilities of existing solutions, and enables the rapid creation and deployment
of new types of management solutions. These solutions can be extended dynamically
to incorporate new equipment and services in a plug-and-play manner.

The JMX specification agents and managers developed using Java technology offer
the following benefits:

= Platform independence

= Protocol independence

= Information model independence

= Management application independence

Products

The architectures of two enterprise management software products, Sun MC 3.0
software—an EMS solution and a development environment for extending the
capabilities—and AdventNet WebNMS 2.3—a standards compliant development
environment that has gained acceptance in the Telco environments. The following
sections detail the features that produce the benefits of these two products.

16 Enterprise Management Systems, Part |: Architectures and Standards ¢ April 2002

Sun MC 3.0 Software Architecture

Sun MC 3.0 software evolved from several generations of Sun Network and Systems
Management Tools. Starting with SunNet Manager platform, in the late 1980’s, the
architecture consisted of a simple manager-agent-manager model. SunNet Manager
platform was extensible and included a remote procedure call (RPC)-based
communication model between a manager and agents. SunNet Manager platform
served its purpose well for LAN deployments, but reached limitations in larger
enterprise solutions. Sun’s subsequent generation product, the Solstice Enterprise
Manager™ software, was designed for large enterprise deployments. Solstice
Enterprise Manager software was scalable, flexible, object-oriented, and was targeted
as a development and management platform out of the box. Solstice Enterprise
Manager was highly extensible, and supported SNMP, CMIP, and
Telecommunications Management Network (TMN) protocol. The rapid adoption of
Java technology-based management applications created another next-generation
product, Sun Management Center software, (version 3.0 is the current release as of
the date of this article). Sun MC 3.0 software is a comprehensive systems
management tool for managing Sun servers, storage, and the Solaris™ Operating
Environment. Sun MC software is also a flexible framework with independent
distributed services that are available to management applications and third-party
management products. The architecture includes a modular pluggable architecture
that can add and remove Java technology and non Java technology services.

Sun MC software is designed primarily to manage Sun Systems well. AdventNet
WebNMS is designed to manage a variety of devices by integrating other vendor-
specific EMS products. The integration of Sun MC and AdventNet WebNMS
softwares, permits a flexible and effective solution, because every vendor knows
how to manage their own devices best.

FIGURE 6 shows a high-level overview of the Sun MC 3.0 software architecture. Sun
MC software consists of following tiers:

= Client Tier—Management clients access the server through a variety of protocols
and technologies, such as a Web browser and Java application.

= Server Tier—Interfaces with the client accepting and processing requests, and
routes to the appropriate service or agents. The server also propagates alarms and
event messages to the clients. The server is a central control center for all
distributed information. Sun MC 3.0 software offers a comprehensive set of APIs
for integration with other management systems, and empowers developers in
creating sophisticated management applications.

= Agent Tier—Resides on the managed device and provides the communication
interface between the native device and the Sun MC software server process.

Sun MC 3.0 software also has many of the core NMS functions, such as Event
Services, Topology Services, Configuration Services, etc. The Sun MC software
agents are intelligent agents, far more sophisticated than the traditional simple
SNMP agents that only perform limited operations. The Sun MC software agents are
dynamically configurable and autonomous.

Products 17

Sun MC 3.0 Sun MC 3.0
Web browser
client software software
client client
Metadata Web Configuration
service] | server service
Event . I
management Sesglon Fllter_lng
service service service
Trap Topology
handler I service
Sun MC 3.0 Sun MC 3.0 Sun MC 3.0
software software software
agent agent probe
FIGURE6 Sun MC 3.0 Software High-Level Architecture Overview

Sun™ Developer Management Center is a separate product, which provides various
APIs and tools to create not only management applications using the exposed client
APIs, but also to extend the capabilities of the Sun MC software by creating loadable
modules that run in the server tier. These modules can access the services shown in
FIGURE 6 and create sophisticated event filter and correlation services. The server
APIs allow the integration and creation of new services, such as emitters of
notifications, receptors of events, protocol modules, etc.

AdventNet WebNMS 2.3 Architecture

FIGURE 7 shows a high-level overview of the AdventNet WebNMS architecture.

The clients can be Java application or browser-based. They interface with the front-
end Web servers and are typically load balanced by a multilayer switch. The core
functions include a discovery engine that maps discovered devices to a managed
object and is defined by a software class. This information is then stored in the
database. The event manager includes a hierarchical structure starting from a trap
manager that identifies the trap and creates an event object. This object is then
parsed to create alarm objects. At each level, redundant data is discarded and events

18 Enterprise Management Systems, Part |: Architectures and Standards ¢ April 2002

are correlated. The map server controls the display, including the displayed objects
and appropriate backgrounds, when zooming in and out. The configuration server
stores the configuration of all discovered devices, and is capable of reconfiguring a
device as needed. The polling engine performs periodic polling for status and
performance data.

AdventNet WebNMS platform

Designer tools Administration tools

‘ Mo wizard I

‘Run time administration'

Deployment wizard I
Menu configuration I

Security administration I
Batch configuration I

n

Client

‘ HTML I ‘Java technology' ‘ Java Applet I

OSS interfaces
[corBAj | snmP [xmL |

Communications

IP/ATM

SONET

DWDM

Web -
A 2

‘ TL1 I ‘JMX technology I

Management services

‘ Provisioning I ‘ Performance I ‘ Policy I ‘ Fault I

Ethernet

Cable

G HOERERER

‘ Configuration I ‘ Topology I ‘ Security I ‘ Maps I

|w)

n

—
b—

Management server

Optical

Discovery' Polling I Events I CORBA I
SNMPI TL1 I RMI I XML I CLI I

Wireless

i

Framework services (JRE or J2EE server) SA,‘\INAESmd
Transaction I ALF guideI Authentification' Module controII topologies
Storage I Bean buiIderI Scheduler. Logging. Authorization.
- VPN
Database tier Managed systems management
Network Network
o 0 o
| t | t
RDBM":] elemen elemen
FIGURE7 AdventNet WebNMS Platform Overview

Products

19

FIGURE 8 presents an overview of the components in AdvenNet WebNMS and the
interactions between them.

Mediation Back-end Database Front-end Client
tier tier tier tier tier
Java
Management Back-end Front-end
(mediation) techlrjology
server L | i client
11 11
11 11
" L1t HTTP/SSL
XML T ~=Ir
S H e i ~—'ile RMI/CORBA
TL1 115 L
SNMP . I I---- -_':'| . socket
cLI i ¥
CORBA ! i
' - HTML
Back-end Front-end client
NE |e @ o NE
== TCP/IP, RMI,...
= Read-write connection for views and commits
== Read-only connection for views
=== Replicated database
--=- Stand-by connection in case of failure
FIGURE 8 AdventNet WebNMS Platform Architecture

Each component can be distributed. There can be one or more components of each
type based on performance, scalability, and availability requirements. There are five
tiers that are detailed in the following sections.

Mediation Server Tier

The mediation server (or management) tier provides XML mediation for all
southbound management protocols like SNMP, TL1, CORBA, TFTP, XML, CLI/
Telnet, etc. A provider interface facilitates integration of other protocols. Common
management functions are handled in this layer, making the protocol providers
limited with protocol-specific operations only. The management server provides
multiple interfaces for application development like XML message interface, Java
technology, APlIs, etc.

Enterprise Management Systems, Part |: Architectures and Standards « April 2002

Back-end Tier

The back-end server tier consists of the core business logic related to management
functions like fault, configuration, performance, security, service provisioning, etc.
The main aspects of the back-end server tier are:

= Core Management —Performs functions like event correlation, alarm notification
and management, template-based provisioning, batch configuration and rollback,
etc.

= Module Management—A module control interface facilitates the starting and
stopping of modules independently.

= Security and Audit—All the back-end tier modules support authorization and
audit, so that the various administrative operations can be traced.

Database Tier

Any relational database management system (RDBMS) that provides a Java Database
Connectivity™ (JDBC™) software driver is supported. State information can be
maintained in a database, making it easier to distribute the components and handle
failover. This tier allows a solution to leverage the benefits of transaction support,
database synchronization, and object locking for data integrity, security, and
availability.

Front-end Tier

The front-end tier consists of the Web container that provides Web access to
management information, the client communication management module, and the
Enterprise JavaBeans™ (EJB™) technology session beans for the management
functions. These items generate views for the clients and forward commit requests to
the back-end tier. The main aspects of the front-end server tier are:

» Client communication—Various transport protocols, such as TCP, Java™ Remote
Method Invocation (Java RMI) technology, HTTP, HTTPs, SSL, etc., are used.

= Session beans—The stateless, E]B technology deployable session beans generate
views from the database based on client requests.

» Updates to client—A subscription-based notification used to allow the front-end
tier to handle high rates of updates to the clients. In this model, clients register for
the updates they are interested in, and the front-end tier server notifies them of
any changes.

Products 21

Client Tier

The J2EE configuration client (for rich GUI) and the HTML client (for Web access
over low speed links) models are provided.

Related Information

Please see the following related information for additional details on the technology
presented in this article.

Case, J., et al. Introduction to Version 3 of the Internet-standard Network Management
Framework, REC 2570, April 1999.

Harrington, D., et al. An Architecture for Describing SNMP Management Frameworks,
RFC 2571, April 1999.

Rose, M., McCloghrie, K. Structure and Identification of Management Information for
TCP/IP Based Internets, RFC 1155, May 1990.

Rose, M., McCloghrie, K. Concise MIB Definitions, RFC 1212, March 1991.

Rose, M. A Convention for Defining Traps for Use With the SNMP, REC 1215, March
1991.

McCloghrie, K., et al. Structure of Management Information Version 2 (SMIv2), RFC
2578, April 1999.

McCloghrie, K., et al. Textual Conventions for SMIv2, REC 2579, April 1999.
Case, J., et al. A Simple Network Management Protocol (SNMP), RFC 1157, May 1990.
Case, J., et al. Introduction to Community Based SNMPv2, REC 1901, January 1996.

Solaris Web-Based Enterprise Management (WBEM) Services Developer’s Guide, Sun
Microsystems, Inc., Part Number 806-6828-05, August 2001.

Java Management Extensions Instrumentation and Agent Specification, v1.0, Sun
Microsystems, Inc., May 2000; [http://www.jcp.org/aboutJava/
communityprocess/first/jsr003/index.htm 1].

Sun Management Center 3.0 Developers” Reference Manual, Sun Microsystems, Inc., Part
Number 806-5945-10, November 2000.

22 Enterprise Management Systems, Part |I: Architectures and Standards < April 2002

About the Authors

Deepak Kakadia is a staff engineer, network architect in the Enterprise Engineering Group,
for Sun Microsystems, Inc., located in Menlo Park, California. Deepak has been with Sun for
seven years. He previously worked for various companies including Corona Networks as a
principal engineer; Network Management Systems, as a team leader for the QoS Policy-based
NMS subsystem; Digital Equipment Corp, where he worked on DEC OSF/1; and with
Nortel Networks (Bell Northern Research), in Ottawa Canada, as member of the technical
staff. Deepak received his B. Eng. in Computer Systems, M.S. in Computer Science, and
completed his Ph.D qualifying exams and course work. Deepak has filed two patents: 1)
Event Correlation and 2) QoS in the area of Network Management.

Dr. Tony G. Thomas is the COB and chief architect at AdventNet, Inc. Prior to founding
AdventNet, Inc. he was a member of the technical staff at AT&T Bell Laboratories in
Holmdel, New Jersey. He was instrumental in developing advanced Frame Relay network
management solutions at Bell Labs. He obtained his Ph.D. in Electrical Engineering from
Johns Hopkins University, Baltimore, Maryland.

Dr. Sridhar Vembu is the CEO of AdventNet, Inc. He started his career at Qualcomm, Inc.,
in San Diego, where he was a wireless systems designer working on satellite-based personal
communications systems. He has applied for three patents in this area. He obtained a Ph.D.
in Electrical Engineering from Princeton University, Princeton, New Jersey.

Jay Ramasamy is a Senior Software Engineer with AdventNet, Inc. and has several years of
Enterprise JavaBeans software development experience. He obtained his M.S. from Case
Western Reserve University, Cleveland, Ohio.

About the Authors 23

24 Enterprise Management Systems, Part I: Architectures and Standards < April 2002

	Enterprise Management Systems Part I: Architectures and Standards
	Deepak Kakadia, Sun Microsystems, Inc., Dr. Tony G. Thomas, AdventNet, Inc., Dr. Sridhar Vembu, A...
	Enterprise Management Systems, Part I: Architectures and Standards

	Introduction
	Architectures
	1. Network Architecture—This perspective describes the physical network topology of the managers ...
	2. Software Architecture—This perspective describes the software construction of the manager and ...
	Network Architectures
	FIGURE�1 NMS Topologies
	1. Element Management Systems (EMSs)—This class of systems are developed by computer and network ...
	2. Management Platforms—This class of systems are actually development frameworks for NMSs. There...
	3. Management Applications—This class of systems can implement one or more FCAPS functions and ma...
	4. Management Systems—This class of systems provides core services, which are accessed via APIs, ...
	Element Management Systems
	Management Platforms
	FIGURE�2 Management System Software Architecture

	Management Applications—Fault, Configuration, Accounting, Performance, and Security
	Management System

	Standards
	Simple Network Management Protocol
	FIGURE�3 SNMP V2 Framework
	SNMP Operations
	Management Information Base
	Specifying SNMP Variables in GetRequests
	Web-based Enterprise Management/Common Information Model
	FIGURE�4 WBEM/CIM Architecture

	Java Management Extensions
	FIGURE�5 JMX Specification Architecture Components
	JMX technology and MBeans provide:

	Products
	Sun MC 3.0 Software Architecture
	FIGURE�6 Sun MC 3.0 Software High-Level Architecture Overview

	AdventNet WebNMS 2.3 Architecture
	FIGURE�7 AdventNet WebNMS Platform Overview
	FIGURE�8 AdventNet WebNMS Platform Architecture
	Mediation Server Tier
	Back-end Tier
	Database Tier
	Front-end Tier
	Client Tier

	Related Information
	About the Authors

