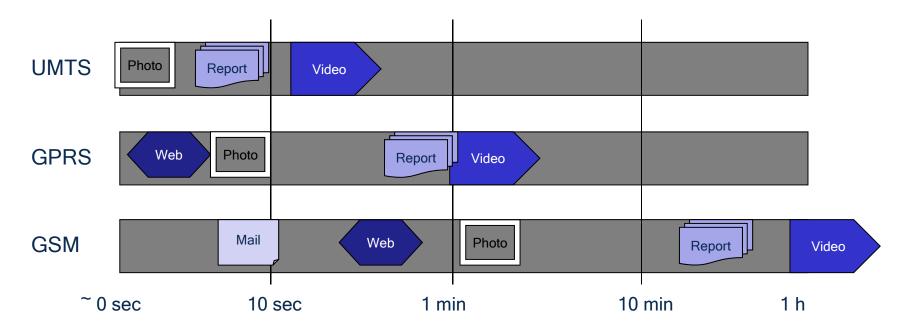


Department of Computer Science Institute for System Architecture, Chair for Computer Networks

UMTS: Universal Mobile Telecommunications System


Mobile Communication and Mobile Computing Prof. Dr. Alexander Schill http://www.rn.inf.tu-dresden.de

UMTS: Characteristics

- UMTS is the European implementation of IMT (International Mobile Telecommunications) by ETSI (European Telecommunication Standards Institute)
- relatively high data rates: 144 kbit/s mobile, up to 2 Mbit/s in local area (and even higher with advanced extension protocols)
- integration of different mobile radio communications-, wireless- and pager-systems into one common system
- speech-, data-, and multimedia- information services independent of network access
- support of different carrier services:
 - real-time capable / not real-time capable
 - circuit switched / packet switched
- Roaming also between UMTS, GSM/GPRS and satellite networks
- Asymmetrical data rates on up-/downlink, use of CDMA

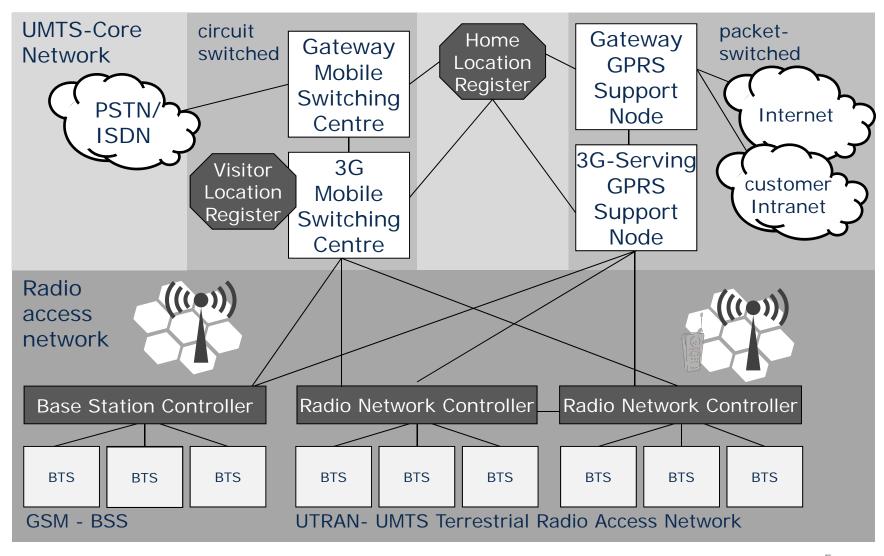
UMTS - Performance

Transmission	Real- time (Video)	Non Real-time (SMS etc.)				
Bit error rate	10 ⁻³ 10 ⁻⁷	10 ⁻⁵ 10 ⁻⁸				
Permitted delay	20ms 300ms	> 150 ms				

source: Mobilkom Austria

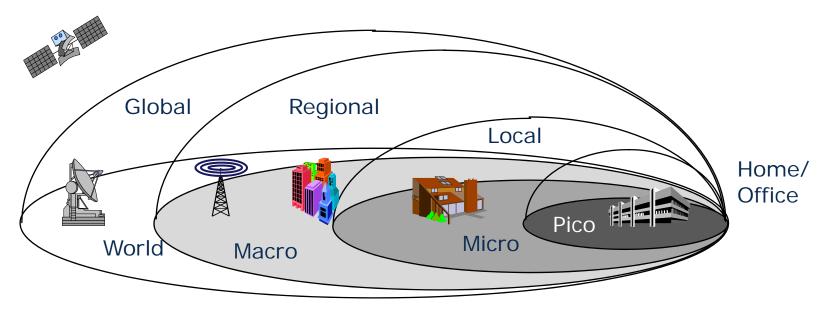
UMTS - Hardware

- big color displays
- high resolution
- True Color
- multitouch



Examples: Nokia, Apple, Blackberry

UMTS/WLAN-Router


with 300 MBit/s W-LAN-Hotspot PC Card Slot for Vodafone Mobile Connect Card UMTS 4 Port Ethernet Switch local networks

UMTS Network Structure

source: Mobilkom Austria

UMTS: Hierarchical Cell Structure

expansion		Data rate (kbit/s)	Max. velocity (km/h)	Special features			
World Cell	d Cell global			no UTRAN, special satellite technology			
Macro Cell	ell several km 144 >3		>300	complete national wide-area UMTS support			
Micro Cell several 100m 38		384	~100	Greater cities, commonly used			
Pico Cell	ca. 100 m	2000	~10	"Hotspots" – e.g. airport, station			

Service concept

Virtual Home Environment (VHE)

- services are freely configurable, configuration globally available
- selection of service quality and corresponding costs
- behavior in case of bottlenecks (data rates, etc.) configurable
- dynamic adaptation according to connection quality

UPT: Universal Personal Telecommunication Service

- one phone number for several devices (Call-Management)
- subscriber localization e.g. based on SIM-card
- call forwarding; virtual mobility by changing between devices

UMTS: Basic Network Structure

- Access Network: base stations, responsible for radio transmission to mobile end devices
- Core Network (Fixed Network): responsible for internal connections
- Intelligent Network (IN): responsible for billing, subscriber localization, roaming, handover, added-value services (voice mailbox, video conferencing etc.)

General reference architecture

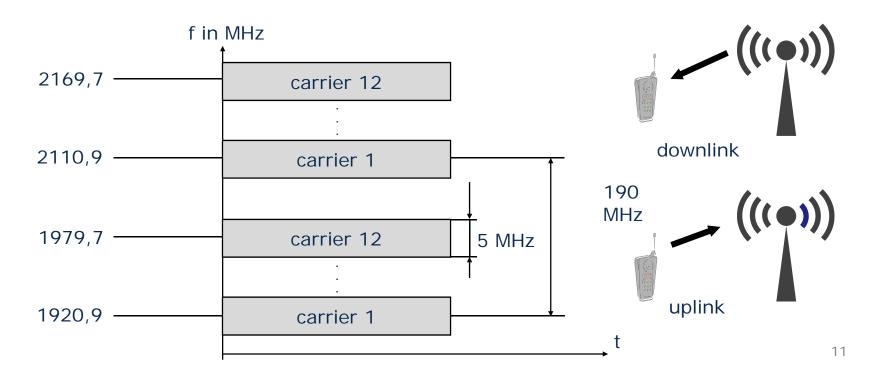
UTRA: UMTS Terrestrial Radio Access

- UTRAN (UTRA-Network) contains several Radio Network
 Subsystems (RNS) and contains functions for mobility management
- RNS controls handover at cell change, implements functions for encoding and administrates the resources of the radio interface
- U_u connects UTRAN with mobile end devices, so called User Equipment (UE), is comparable with U_m in GSM
- UTRAN is connected over I_u with the Core Network, comparable with the GSM interface between BSC and MSC
- CN contains the interfaces to other networks and mechanisms for connection handover to other systems

UMTS-radio interface UTRA (UMTS Terrestrial Radio Access)

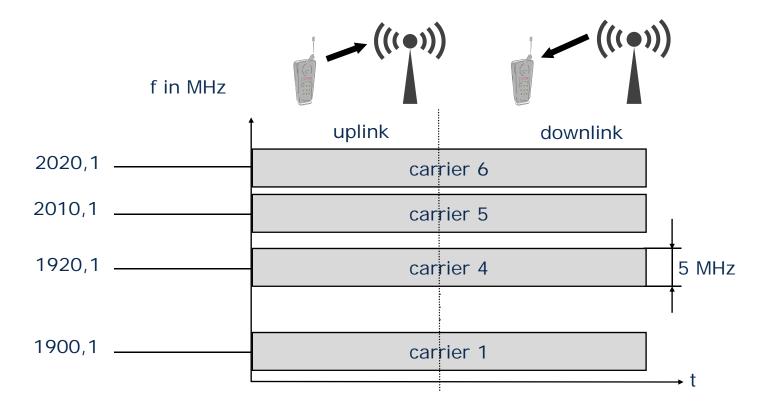
Two modes defined:

UTRA/FDD (Frequency Division Duplex)


- mainly in suburban areas for symmetrical transmission of speech and video
- data rates up to 384 kbit/s, supra-regional roaming
- for circuit- and packet switched services in urban areas

UTRA/TDD (Time Division Duplex)

- mainly in households and other restricted areas (company premises, similar to DECT)
- for broadcast of speech and video, symmetrical: up to 384 kbit/s
- also asymmetrical: up to 2 Mbit/s

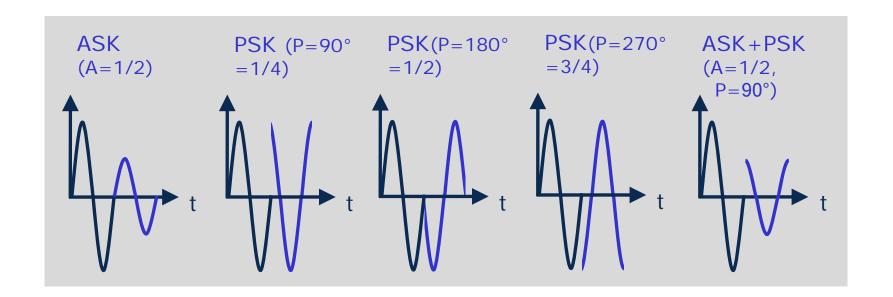

UTRA/FDD

- integrates wideband-CDMA (W-CDMA) and DSSS (Direct Sequence Spread Spectrum)
- channel separation by carrier frequencies, spreading code and phase position (only uplink)
- approx. 250 channels, data rates up to 384 kbit/s
- complex performance control necessary

UTRA/TDD

- integrates wideband-TDMA/CDMA and DSSS
- sends and receives on same carrier (TDD)
- approx. 120 channels, data rates up to 2 Mbit/s
- channel separation by spread code and time slots
- precise synchronization necessary

UMTS Enhancement: HSPA

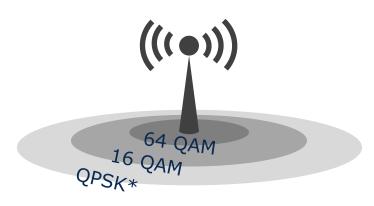

- HSPA (High-speed Packet Access) = HSDPA+HSUPA
- HSDPA (High-speed Downlink Packet Access), extension of UMTS
- Data rates up to 14,4 Mbit/s (10,8 Mbit/s with errorcorrection encoding) on downlink channel (even higher rates proposed for the future and tested under lab conditions)
- Combination of channel bundling (TDMA), wideband code multiplex (W-CDMA) and improved coding (adaptive modulation and coding with advanced scheduling)
- adaptive switching between 4 QAM (quadrature amplitude modulation) and 16 QAM (depending on channel quality)
- HSUPA (High-speed Uplink Packet Access) for upload

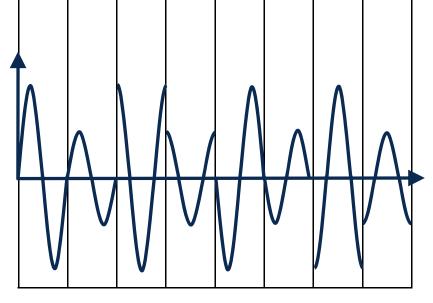
UMTS Enhancement: HSPA+

- HSPA+ further enhancement of UMTS
- Data rates up to 28 Mbit/s on downlink channel
- Speed-up reached via 64 QAM and MIMO (multiple input / multiple output)
- Same as in HSPA:
 - Separate control channel
 - Basis for mobile internet and mobile multimedia applications (videophone, movies, games etc.)

HSPA+: Modulation basics of QAM

QAM (Quadrature Amplitude Modulation) is a combination of Amplitude Shift Keying **ASK** and Phase Shift Keying **PSK**

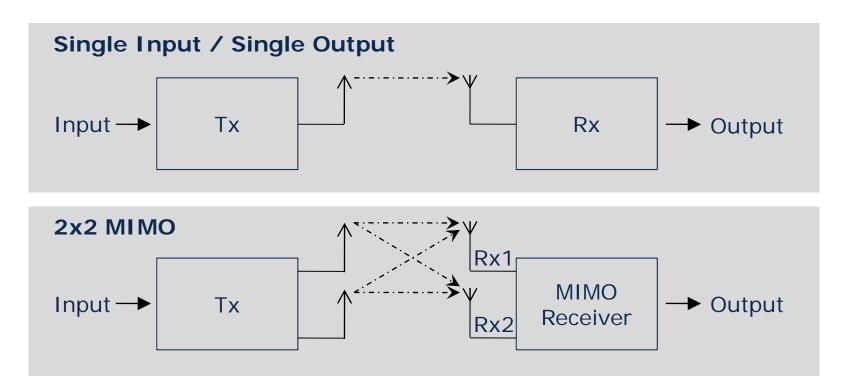



HSPA+: Modulation basics of QAM

• 8 QAM example: (3bits)

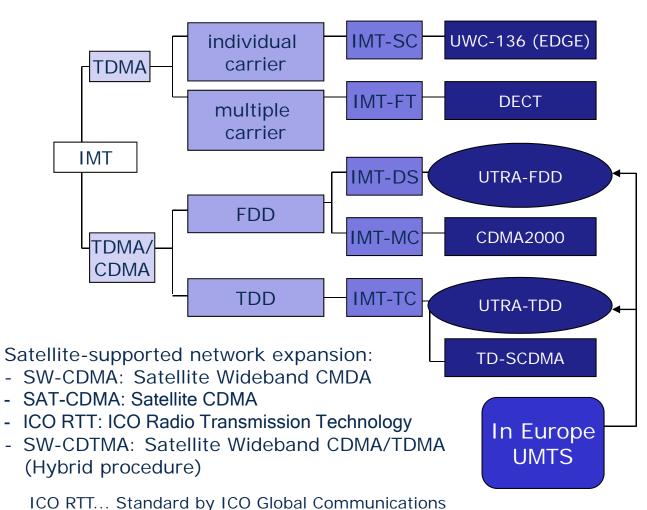
Bit value	000	001	010	011	100	101	110	111
Amplitude	1	1/2	1	1/2	1	1/2	1	1/2
Phase Shift	No	No	1/4	1/4	1/2	1/2	3/4	3/4

 In case of 8 QAM the 8 conforms to the highest possible number of codable states (the sensitivity to interference increases with the number of states)



^{*} Quadrature Phase Shift Keying = 4 QAM (no info from amplitude) source: Fujitsu 16

HSPA+: MIMO antenna technique


- MIMO = Multiple Input / Multiple Output
- multiple antennas on sender and receiver side
- increase in spectral efficiency (and resulting data rate) and quality of transmission

LTE: Long Term Evolution

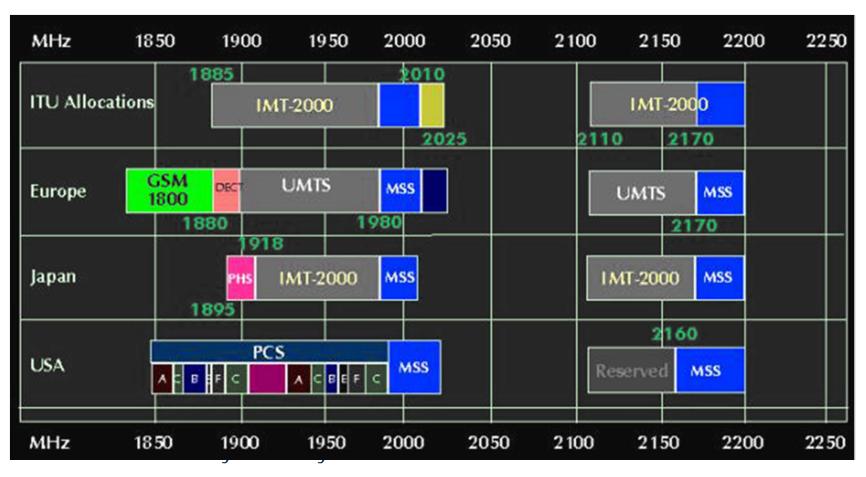
- Further extension of HSDPA with even higher data rates and – nevertheless – compatibility with UMTS
- Use of OFDM (Orthogonal Frequency Division Multiplex) and MIMO (Multiple Input – Multiple Output Antennas); for details see the following chapter
- Flexible channel bandwidths ranging from 1.4 MHz to 20 MHz (UMTS: static bandwidth of 5 MHz per channel); therefore better adaptation to user requirements
- Data rates: up to 300 MBit/s downlink and 75 MBit/s uplink; very low latency under 5 ms
- Official standard with implementations by several providers worldwide

IMT - Structure

- 3 systems
- UMTS
- CDMA2000
- UWC-136
- 2 core technologies
- TDMA
- TDMA/CDMA

IMT family of radio interfaces:

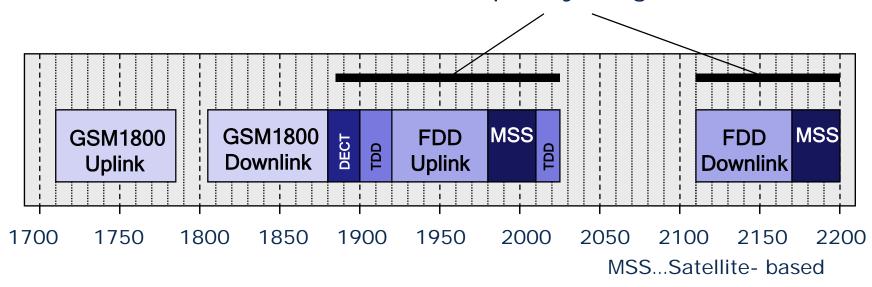
- IMT-DS (Direct Spread)
 - UTRA-FDD (UMTS)
- IMT-MC (Multi Carrier)
 - CDMA2000, USA
- IMT-TC (Time Code)
 - UTRA-TDD (UMTS), TD-SCDMA (Synchronous Code Division Multiple Access, China)
- IMT-SC (Single Carrier)
 - UWC-136, USA
- IMT-FT (Frequency time)
 - DECT

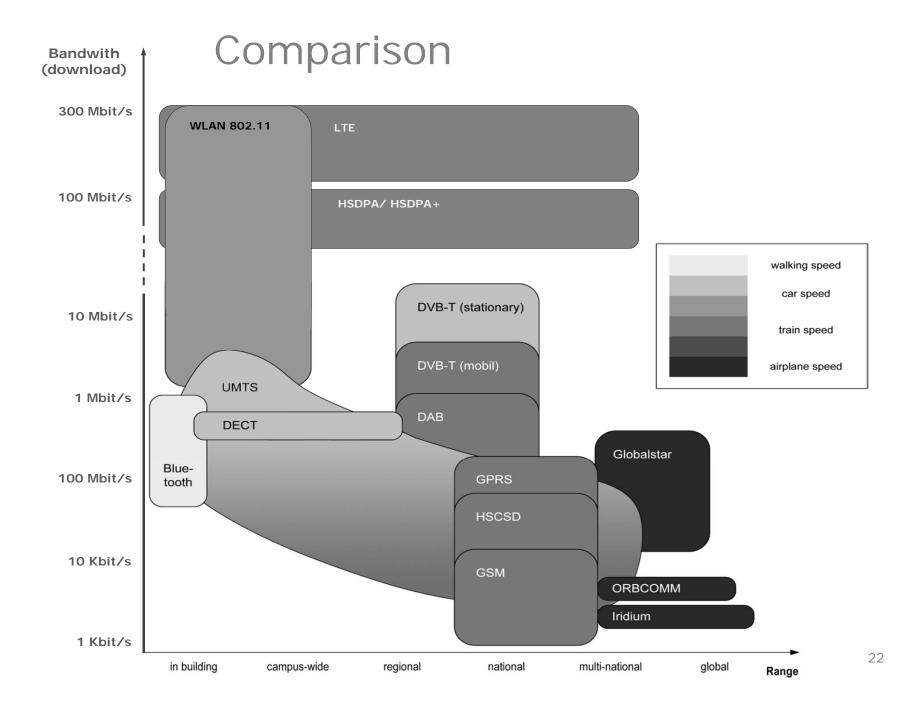

source: www.UMTS-Report.com

IMT ... International Mobile Telecommunications

UTRA ... Universal Terrestrial Radio Access

UWC ... Universal Wireless Communications


Worldwide frequency assignment for IMT • developed by ITU


PCS... Personal Communication System

Frequency Assignment in Europe

230 MHz frequency range for IMT

- with FDD symmetrical spectrum is necessary, not with TDD (time slots at same frequency)
- gradual assignment of new wavebands up to 300-500 MHz additional frequency range, e.g. in the 2.5-3 GHz area, but also in the 900 MHz band (as a gradual replacement of GSM)

UMTS: Summary

- After delayed implementation and introduction, UMTS caught up and is now widely used, especially for business applications
- High-performance service is mainly limited to urban areas, otherwise GPRS has to be used
- Worldwide accessibility can be realized only with multimode end devices (e.g. combining different CDMA variants)
- even in Europe, combined UTRA-FDD/UTRA-TDD/GPRS devices are necessary (however, this imposes no major hardware problems)
- Typical alternatives to UMTS are WLAN, LTE and WiMAX

Data rate enhancement: Summary

- Usage of improved transmission schemes such as 16QAM or 64QAM (quadrature amplitude modulation, with phase shift keying)
- CDMA to offer more channels in parallel
- Bundling of time slots, especially for downlink, in combination with asymmetric TDD
- Smaller (pico) cells, i.e. less participants compete for the same resources
- + enhancement in latency (GPRS: 700 ms, UMTS: 200-300 ms, HSPA: 100 ms, LTE: 5 ms)

Some further readings

- 3GPP (3rd generation partnership program): www.3gpp.org
- UMTS background information:

```
www.umtsworld.com
www.umtslink.at
```